Effect of Geometrical Parameters on Tensile Properties of Nanotubes

  • Mokhtar AwangEmail author
  • Ehsan Mohammadpour
  • Ibrahim Dauda Muhammad
Part of the Engineering Materials book series (ENG.MAT.)


There is a large variation of mechanical properties, such as Young’s moduli for nanotubes as indicated from both experimental and theoretical studies. From an early study [1], the experimental values of Young’s modulus of the carbon nanotubes was 1.3 −0.4/+0.6 TPa. While, in another study [2] measured value for Young’s modulus of nanotubes as 0.816 ± 0.41 TPa. The wide variation in the experimental results may be due to the several factors including (i) presence of defects in nanotube specimens and (ii) inherent limitations of current experimental techniques.


Graphene Sheet Tube Diameter Secant Modulus Analytical Structural Model Mesh Convergence Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Krishnan, E. Dujardin, T.W. Ebbesen, P.N. Yianilos, M.M.J. Treacy, Young’s modulus of single-walled nanotubes. Phys. Rev. B 58(20), 14013 (1998)CrossRefGoogle Scholar
  2. 2.
    J.P. Salvetat, G.A.D. Briggs, J.M. Bonard, R.R. Bacsa, A.J. Kulik, T. Stöckli, L. Forró, Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82(5), 944 (1999)CrossRefGoogle Scholar
  3. 3.
    E. Mohammadpour, in Numerical And Experimental Evaluation Of Carbon Nanotube/Polypropylene Composites Using Nonlinear Finite Element Modeling, Ph. D. thesis, Universiti Teknologi Petronas, 2013Google Scholar
  4. 4.
    A.L. Kalamkarov, A.V. Georgiades, S.K. Rokkam, V.P. Veedu, M.N. Ghasemi-Nejhad, Analytical and numerical techniques to predict carbon nanotubes properties. Int. J. Solids Struct. 43(22), 6832–6854 (2006)CrossRefzbMATHGoogle Scholar
  5. 5.
    J.H. Lee, B.S. Lee, Modal analysis of carbon nanotubes and nanocones using FEM. Comput. Mater. Sci. 51(1), 30–42 (2012)CrossRefGoogle Scholar
  6. 6.
    E.J. Hearn, in Mechanics of Materials 2: the mechanics of elastic and plastic deformation of solids and structural materials, vol. 2 (Butterworth-Heinemann, Oxford, 1997)Google Scholar
  7. 7.
    B.I. Yakobson, C.J. Brabec, J. Bernholc, Structural mechanics of carbon nanotubes: from continuum elasticity to atomistic fracture. J. Comput. Aided Mater. Des. 3, 173–182 (1996)CrossRefGoogle Scholar
  8. 8.
    H. Jiang, P. Zhang, B. Liu, Y. Huang, P.H. Geubelle, H. Gao, The effect of nanotube radius on the constitutive model for carbon nanotubes. Comput. Mater. Sci. 28, 429–442 (2003)CrossRefGoogle Scholar
  9. 9.
    M.-F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84, 5552–5555 (2000)CrossRefGoogle Scholar
  10. 10.
    T. Belytschko, S.P. Xiao, G.C. Schatz, R.S. Ruoff, Atomistic simulations of nanotube fracture. Phys. Rev. B 65, 235–430 (2002)CrossRefGoogle Scholar
  11. 11.
    L. Vaccarini, C. Goze, L. Henrard, E. Hernández, P. Bernier, A. Rubio, Mechanical and electronic properties of carbon and boron-nitride nanotubes. Carbon 38, 1681–1690 (2000)CrossRefGoogle Scholar
  12. 12.
    L. Jiang, W. Guo, A molecular mechanics study on size-dependent elastic properties of single-walled boron nitride nanotubes. J. Mech. Phys. Solids 59(6), 1204–1213 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    C. Li, T.-W. Chou, Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Compos. Sci. Technol. 63, 1517–1524 (2003)CrossRefGoogle Scholar
  14. 14.
    T. Chang, H. Gao, Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J. Mech. Phys. Solids 51, 1059–1074 (2003)CrossRefzbMATHGoogle Scholar
  15. 15.
    V.N. Popov, V.E. Van Doren, M. Balkanski, Elastic properties of single-walled carbon nanotubes. Phys. Rev. B 61(4), 3078 (2000)CrossRefGoogle Scholar
  16. 16.
    O.L. Blakslee, D.G. Proctor, E.L. Seldin, G.B. Spence, T. Weng, Elastic constants of compression-annealed pyrolytic graphite. J. Appl. Phys. 41(8), 3373–3382 (1970)CrossRefGoogle Scholar
  17. 17.
    G. Overney, W. Zhong, D. Tomanek, Structural rigidity and low frequency vibrational modes of long carbon tubules. Zeitschrift für Physik D Atoms (Mol. Clust.) 27(1), 93–96 (1993)CrossRefGoogle Scholar
  18. 18.
    C.-W. Fan, J.-H. Huang, C. Hwu, Y.-Y. Liu, Mechanical Properties of single-walled carbon nanotubes—a finite element approach. Adv. Mater. Res. 33–37, 937–942 (2008)CrossRefGoogle Scholar
  19. 19.
    C.Y.J Cai, T. Yu, S. Yu, Wall thickness of single-walled carbon nanotubes and its Young’s modulus, Phys. Scr. 79 (2009)Google Scholar
  20. 20.
    K. Tserpes, P. Papanikos, G. Labeas, S. Pantelakis, Multi-scale modeling of tensile behavior of carbon nanotube-reinforced composites. Theoret. Appl. Fract. Mech. 49, 51–60 (2008)CrossRefGoogle Scholar
  21. 21.
    K. Tserpes, P. Papanikos, Finite element modeling of single-walled carbon nanotubes. Compos. B Eng. 36, 468–477 (2005)CrossRefGoogle Scholar
  22. 22.
    E. Mohammadpour, M. Awang, Nonlinear finite-element modeling of graphene and single-and multi-walled carbon nanotubes under axial tension. Appl. Phys. A 106(3), 581–588 (2012)CrossRefGoogle Scholar
  23. 23.
    B.I. Yakobson, C.J. Brabec, J. Bernholc, Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Rev. Lett. 76, 2511–2514 (1996)CrossRefGoogle Scholar
  24. 24.
    M. Rossi, M. Meo, On the estimation of mechanical properties of single-walled carbon nanotubes by using a molecular-mechanics based FE approach. Compos. Sci. Technol. 69, 1394–1398 (2009)CrossRefGoogle Scholar
  25. 25.
    S. Xiao, W. Hou, Studies of size effects on carbon nanotubes’ mechanical properties by using different potential functions. Fuller. Nanotub. Carbon Nanostruct. 14, 9–16 (2006)CrossRefGoogle Scholar
  26. 26.
    A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard, W.M. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992)CrossRefGoogle Scholar
  27. 27.
    J. Xiao, B. Gama, J. Gillespiejr, An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes. Int. J. Solids Struct. 42, 3075–3092 (2005)CrossRefzbMATHGoogle Scholar
  28. 28.
    J.R. Xiao, J. Staniszewski, J.W. Gillespie Jr, Fracture and progressive failure of defective graphene sheets and carbon nanotubes. Compos. Struct. 88, 602–609 (2009)CrossRefGoogle Scholar
  29. 29.
    A.V. Bandura, R.A. Evarestov, Ab initio structure modeling of ZrO2 nanosheets and single-wall nanotubes. Comput. Mater. Sci. 65, 395–405 (2012)CrossRefGoogle Scholar
  30. 30.
    D. Dass, R. Prasher, R. Vaid, Analytical study of unit cell and molecular structures of single walled carbon nanotubes. Int. J. Comput. Eng. Res. 2, 1447–1457 (2012)Google Scholar
  31. 31.
    K. Tibbetts, R. Doe, G. Ceder, Polygonal model for layered inorganic nanotubes. Phys. Rev. B 80(1), 014102 (2009)CrossRefGoogle Scholar
  32. 32.
    R. Ansari, S. Rouhi, M. Mirnezhad, F. Sadeghiyeh, Studying the buckling and vibration characteristics of single-walled zinc oxide nanotubes using a nanoscale finite element model. Appl. Phys. A 112(3), 767–774 (2013)CrossRefGoogle Scholar
  33. 33.
    L.N. Wang, L. Jing-Li, Fabrication and mechanical properties of anodized zirconium dioxide nanotubular arrays. J. Phys. D Appl. Phys. 44(7), 075301 (2011)CrossRefGoogle Scholar
  34. 34.
    L. Boldrin, F. Scarpa, R. Chowdhury, S. Adhikari, Effective mechanical properties of hexagonal boron nitride nanosheets. Nanotechnology 22(50), 505702 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mokhtar Awang
    • 1
    Email author
  • Ehsan Mohammadpour
    • 1
  • Ibrahim Dauda Muhammad
    • 2
  1. 1.Department of Mechanical EngineeringUniversiti Teknologi PetronasSeri IskandarMalaysia
  2. 2.Department of Mechanical EngineeringUniversity of AbujaAbujaNigeria

Personalised recommendations