Linear Finite Element Analysis of Nanotubes

  • Mokhtar AwangEmail author
  • Ehsan Mohammadpour
  • Ibrahim Dauda Muhammad
Part of the Engineering Materials book series (ENG.MAT.)


From proven chemical calculations [1], the harmonic functions provide a reasonable approximation to the potential energy of molecular systems in which the bond length is near its equilibrium position.


Beam Element Element Type Material Studio Main Menu Protein Data Bank File 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    N.L. Allinger, Conformational analysis. 130. MM2. A hydrocarbon force field utilizing VI and V2 torsional terms. J. Am. Chem. Soc. 99, 8127–8134 (1977)CrossRefGoogle Scholar
  2. 2.
    T. Chang, H. Gao, Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J. Mech. Phys. Solids 51, 1059–1074 (2003)CrossRefzbMATHGoogle Scholar
  3. 3.
    G.M. Odegarda, T.S. Gatesb, L.M. Nicholsonc, K.E. Wised, Equivalent-continuum modeling of nano-structured materials. Compos. Sci. Technol. 62, 1869–1880 (2002)CrossRefGoogle Scholar
  4. 4.
    C. Li, A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40, 2487–2499 (2003)CrossRefzbMATHGoogle Scholar
  5. 5.
    C.W. Fan, Y.Y. Liu, C. Hwu, Finite element simulation for estimating the mechanical properties of multi-walled carbon nanotubes. Appl. Phys. A 95, 819–831 (2009)CrossRefGoogle Scholar
  6. 6.
    Z. Han, A. Fina, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog. Polym. Sci. 36, 914–944 (2010)CrossRefGoogle Scholar
  7. 7.
    K. Ahmad, W. Pan, Dramatic effect of multiwalled carbon nanotubes on the electrical properties of alumina based ceramic nanocomposites. Compos. Sci. Technol. 69, 1016–1021 (2009)CrossRefGoogle Scholar
  8. 8.
    E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics: elasticity, strength and toughness of nanorods and nanotubes. Science 277, 1997 (1971)Google Scholar
  9. 9.
    T. Shokuhfar, G.K. Arumugam, P.A. Heiden, R.S. Yassar, C. Friedrich, Direct compressive measurements of individual titanium dioxide nanotubes. ACS Nano 3(10), 3098–3102 (2009)CrossRefGoogle Scholar
  10. 10.
    I. Kaplan-Ashiri, R. Tenne, Mechanical properties of WS2 nanotubes. J. Cluster Sci. 18(3), 549–563 (2007)Google Scholar
  11. 11.
    S. Bertolazzi, J. Brivio, A. Kis, Stretching and breaking of ultrathin MoS2. ACS Nano 5(12), 9703–9709 (2011)CrossRefGoogle Scholar
  12. 12.
    A.P. Suryavanshi, M.F. Yu, J. Wen, C. Tang, Y. Bando, Elastic modulus and resonance behavior of boron nitride nanotubes. Appl. Phys. Lett. 84(14), 2527–2529 (2004)CrossRefGoogle Scholar
  13. 13.
    A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard, W.M. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992)CrossRefGoogle Scholar
  14. 14.
    N.L. Allinger, Molecular Structure: Understanding Steric and Electronic Effects from Molecular Mechanics: Wiley, Hoboken (2010)Google Scholar
  15. 15.
    H. Wan, F. Delale, A structural mechanics approach for predicting the mechanical properties of carbon nanotubes. Meccanica 45, 43–51 (2010)CrossRefzbMATHGoogle Scholar
  16. 16.
    T. Belytschko, S.P. Xiao, G.C. Schatz, R.S. Ruoff, Atomistic simulations of nanotube fracture. Phys. Rev. B 65, 235–430 (2002)CrossRefGoogle Scholar
  17. 17.
    J. Xiao, B. Gama, J. Gillespiejr, An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes. Int. J. Solids Struct. 42, 3075–3092 (2005)CrossRefzbMATHGoogle Scholar
  18. 18.
    K. Tserpes, P. Papanikos, G. Labeas, S. Pantelakis, Multi-scale modeling of tensile behavior of carbon nanotube-reinforced composites. Theoret. Appl. Fract. Mech. 49, 51–60 (2008)CrossRefGoogle Scholar
  19. 19.
    M. Rossi, M. Meo, On the estimation of mechanical properties of single-walled carbon nanotubes by using a molecular-mechanics based FE approach. Compos. Sci. Technol. 69, 1394–1398 (2009)CrossRefGoogle Scholar
  20. 20.
    G. Cao, X. Chen, J.W. Kysar, Thermal vibration and apparent thermal contraction of single-walled carbon nanotubes. J. Mech. Phys. Solids 54, 1206–1236 (2006)CrossRefzbMATHGoogle Scholar
  21. 21.
    M.A. Caravaca, J.C. Mino, V.J. Pérez, R.A. Casali and C.A.Ponce, Ab initio study of the elastic properties of single and polycrystal TiO2, ZrO2 and HfO2 in the cotunnite structure. J. Phys. Condens. Matter 21(1) (2009)Google Scholar
  22. 22.
    M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64(4), 1045 (1992)CrossRefGoogle Scholar
  23. 23.
    G.V. Lewis, C.R.A. Catlow, Potential models for ionic oxides. J. Phys. C: Solid State Phys. 18(6), 1149–1156 (1985)CrossRefGoogle Scholar
  24. 24.
    D. Fang, Z. Luo, S. Liu, T. Zeng, L. Liu, J. Xu, W. Xu, Photoluminescence properties and photocatalytic activities of zirconia nanotube arrays fabricated by anodization. Opt. Mater. 35(7), 1461–1466 (2013)CrossRefGoogle Scholar
  25. 25.
    S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I. Probert, K. Refson, M.C. Payne, First principles methods using CASTEP. Z. Kristallogr. 220, 567–570 (2005)Google Scholar
  26. 26.
    A.R. Yavari, J.J. Lewandowski, J. Eckert, Mechanical properties of bulk metallic glasses. MRS Bull. 32(08), 635–638 (2007)CrossRefGoogle Scholar
  27. 27.
    A. Dwivedi, A.N. Cormack, A computer simulation study of the defect structure of calcia-stabilized zirconia. Philos. Mag. A 61(1), 1–22 (1990)CrossRefGoogle Scholar
  28. 28.
    R.W. Clough, Original formulation of the finite element method. Finite Elem. Anal. Descrip. 7, 89–101 (1990)CrossRefGoogle Scholar
  29. 29.
    P. Kohnke (ed.), ANSYS Theory Reference. (ANSYS, 1999)Google Scholar
  30. 30.
    M. Saeed, Finite Element Analysis: Theory and Application with ANSYS. Pearson Education, India, 2003Google Scholar
  31. 31.
    ANSYS Release, 10.0 Documentation (ANSYS Inc., Canonsburg, PA, 2005)Google Scholar
  32. 32.
    Fluent, ANSYS. 12.0 User’s guide. User Inputs for Porous Media 6, 2009Google Scholar
  33. 33.
    E. Mohammadpour, Numerical and experimental evaluation of carbon nanotube/polypropylene composites using nonlinear finite element modeling, Ph.D. thesis, Universiti Teknologi Petronas, 2013Google Scholar
  34. 34.
    K. Tserpes, P. Papanikos, Finite element modeling of single-walled carbon nanotubes. Compos. B Eng. 36, 468–477 (2005)CrossRefGoogle Scholar
  35. 35.
    C.-W. Fan, J.-H. Huang, C. Hwu, Y.-Y. Liu, Mechanical properties of single-walled carbon nanotubes—a finite element approach. Adv. Mater. Res. 33–37, 937–942 (2008)CrossRefGoogle Scholar
  36. 36.
    S. Nulaka, A.R. Allam, S. Kopparthi, Python program to generate atom records from PDB protein files for drug design studies. J. Bioinform. Res. 1, 36–40 (2012)Google Scholar
  37. 37.
    A.N. Enyashin, S. Gemming, G. Seifert, Simulation of Inorganic Nanotubes, in Materials for Tomorrow: Theory. Experiments and Modeling, ed. by S. Gemming, M. Schreiber, J.-B. Suck (Springer, Berlin, 2010)Google Scholar
  38. 38.
    A.V. Bandura, R.A. Evarestov, Ab initio structure modeling of ZrO2 nanosheets and single-wall nanotubes. Comput. Mater. Sci. 65, 395–405 (2012)CrossRefGoogle Scholar
  39. 39.
    A.L. Kalamkarov, A.V. Georgiades, S.K. Rokkam, V.P. Veedu, M.N. Ghasemi-Nejhad, Analytical and numerical techniques to predict carbon nanotubes properties. Int. J. Solids Struct. 43(22), 6832–6854 (2006)CrossRefzbMATHGoogle Scholar
  40. 40.
    BEAM188 3-D Linear Finite Strain Beam [Online] 2009. Accessed 22 Sept 14
  41. 41.
    I.D. Muhammad, Non-linear finite element modeling of mechanical behaviour of single-walled Zirconia nanotubes, (Ph.D. thesis), Universiti Teknologi Petronas, 2015Google Scholar
  42. 42.
    Release, ANSYS “12.0.” ANSYS Theory Reference, (2009)Google Scholar
  43. 43.
    M. Zakeri, M. Shayanmehr, On the mechanical properties of chiral carbon nanotubes. J. Ultrafine Grained Nanostruct. Mater. 46(1), 1–9 (2013)Google Scholar
  44. 44.
    J.H. Lee, B.S. Lee, Modal analysis of carbon nanotubes and nanocones using FEM. Comput. Mater. Sci. 51(1), 30–42 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mokhtar Awang
    • 1
    Email author
  • Ehsan Mohammadpour
    • 1
  • Ibrahim Dauda Muhammad
    • 2
  1. 1.Department of Mechanical EngineeringUniversiti Teknologi PetronasSeri IskandarMalaysia
  2. 2.Department of Mechanical EngineeringUniversity of AbujaAbujaNigeria

Personalised recommendations