Advertisement

Nanotube Modeling Using Beam Element

  • Mokhtar AwangEmail author
  • Ehsan Mohammadpour
  • Ibrahim Dauda Muhammad
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Advances in computing technology have significantly increased the scientific interest in computer based molecular modeling of nano materials [1]. In order to perform any computational study on molecular properties, it is necessary to create a molecular model. In other words, it is essential to create an accurate model of atomic interactions at the first step. This model could be used to investigate the mechanical properties of a material near molecular length scales [2]. It can be derived by taking into account an appropriate crystal structure. Any technique that can produce a valid model for a given compound seems appropriate. Molecular modeling could be a useful tool at this stage. It is widely employed to determine molecular equilibrium structures. In addition, it could be used to design new materials with desirable properties [3]. These theoretical methods can be classified into two board branch which are ‘‘bottom up’’ and ‘‘top down’’. ‘‘Bottom up’’ is based on quantum/molecular mechanics including the classical MD and ab initio methods. In contrast, ‘‘top down’’ approach arose from continuum mechanics.

Keywords

Graphene Sheet Global Coordinate System Frame Element Total Strain Energy Sectional Stiffness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    T. Chang, H. Gao, Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J. Mech. Phys. Solids 51, 1059–1074 (2003)CrossRefzbMATHGoogle Scholar
  2. 2.
    P. Comba, T.W. Hambley, B. Martin, Molecular Modeling of Inorganic Compounds, 3 edn. (Wiley, 2009)Google Scholar
  3. 3.
    A. Hinchliffe, Molecular Modelling for Beginners (Wiley, 2008)Google Scholar
  4. 4.
    B.I. Yakobson, P. Avouris, Mechanical properties of carbon nanotubes. Topics Appl. Phys. 80, 287–327 (2001)CrossRefGoogle Scholar
  5. 5.
    B.I. Yakobson, C.J. Brabec, J. Bernholc, Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Rev. Lett. 76, 2511–2514 (1996)CrossRefGoogle Scholar
  6. 6.
    S. Iijima, C. Brabec, A. Maiti, J. Bernholc, Structural flexibility of carbon nanotubes. J. Chem. Phys. 104, 2089–2092 (1996)CrossRefGoogle Scholar
  7. 7.
    M.B. Nardelli, B.I. Yakobson, J. Bernholc, Mechanism of strain release in carbon nanotubes. Phys. Rev. B 57, 4279 (1998)CrossRefGoogle Scholar
  8. 8.
    L. Vaccarini, C. Goze, L. Henrard, E. Hernández, P. Bernier, A. Rubio, Mechanical and electronic properties of carbon and boron-nitride nanotubes. Carbon 38, 1681–1690 (2000)CrossRefGoogle Scholar
  9. 9.
    Q. Zeng, A. Yu, G. Lu, Multiscale modeling and simulation of polymer nanocomposites. Prog. Polym. Sci. 33, 191–269 (2008)CrossRefGoogle Scholar
  10. 10.
    B.I. Yakobson, M.P. Campbell, C.J. Brabec, J. Bernholc, High strain rate fracture and C-chain unraveling in carbon nanotubes. Comput. Mater. Sci. 8, 341–348 (1997)CrossRefGoogle Scholar
  11. 11.
    Z. Xin, Z. Jianjun, O.-Y. Zhong-can, Strain energy and Young’s modulus of single-wall carbon nanotubes calculated from electronic energy-band theory. Phys. Rev. B 62, 13692 (2000)CrossRefGoogle Scholar
  12. 12.
    M.M. Shokrieh, R. Rafiee, On the tensile behavior of an embedded carbon nanotube in polymer matrix with non-bonded interphase region. Compos. Struct. 92, 647–652 (2010)CrossRefGoogle Scholar
  13. 13.
    B.B.Q. Lu, The role of atomistic simulations in probing the small-scale aspects of fracture—a case study on a single-walled carbon nanotube. Eng. Fract. Mech. 72, 2037–2071 (2005)CrossRefGoogle Scholar
  14. 14.
    N.L. Allinger, in Molecular Structure. Molecular Structures by Computational Methods (Wiley, 2010)Google Scholar
  15. 15.
    N.L. Allinger, Molecular Structure: Understanding Steric and Electronic Effects from Molecular Mechanics (Wiley, 2010)Google Scholar
  16. 16.
    R. Ruoff, Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. C.R. Phys. 4, 993–1008 (2003)CrossRefGoogle Scholar
  17. 17.
    T. Belytschko, S.P. Xiao, G.C. Schatz, R.S. Ruoff, Atomistic simulations of nanotube fracture. Phys. Rev. B 65, 235–430 (2002)CrossRefGoogle Scholar
  18. 18.
    S.L. Mayo, B.D. Olafson, W.A. Goddard, DREIDING: a generic force field for molecular simulations. J. Phys. Chem. 94, 8897–8909 (1990)CrossRefGoogle Scholar
  19. 19.
    N.L. Allinger, Conformational analysis. 130. mm2. a hydrocarbon force field utilizing vi and v2 torsional terms. J. Am. Chem. Soc. 99, 8127–8134 (1977)CrossRefGoogle Scholar
  20. 20.
    G.C. Abell, Empirical chemical pseudopotential theory of molecular and metallic bonding. Phys. Rev. B 31, 6184–6196 (1985)CrossRefGoogle Scholar
  21. 21.
    J. Tersoff, Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys. Rev. Lett. 61, 2879–2882 (1988)CrossRefGoogle Scholar
  22. 22.
    D.W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458–9471 (1990)CrossRefGoogle Scholar
  23. 23.
    D.H. Robertson, D.W. Brenner, J.W. Mintmire, Energetics of nanoscale graphitic tubules. Phys. Rev. B 45, 12592–15595 (1992)CrossRefGoogle Scholar
  24. 24.
    D.G. Pettifor, I.I. Oleinik, Bounded analytic bond-order potentials for sigma and pi bonds. Phys. Rev. Lett. 84, 4124 (2000)CrossRefGoogle Scholar
  25. 25.
    Z.-C. Tu, Z.-C. Ou-Yang, Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young’s moduli dependent on layer number. Phys. Rev. B 65, 233407–4 (2002)Google Scholar
  26. 26.
    T. Lenosky, X. Gonze, M. Teter, V. Elser, Energetics of negatively curved graphitic carbon. Nature 355, 333–335 (1992)CrossRefGoogle Scholar
  27. 27.
    L. Zhang, C. Wan, Y. Zhang, Morphology and electrical properties of polyamide 6/polypropylene/multi-walled carbon nanotubes composites. Compos. Sci. Technol. 69, 2212–2217 (2009)CrossRefGoogle Scholar
  28. 28.
    G.M. Odegarda, T.S. Gatesb, L.M. Nicholsonc, K.E. Wised, Equivalent-continuum modeling of nano-structured materials. Compos. Sci. Technol. 62, 1869–1880 (2002)CrossRefGoogle Scholar
  29. 29.
    H. Zhang, J. Wang, X. Guo, Predicting the elastic properties of single-walled carbon nanotubes. J. Mech. Phys. Solids 53, 1929–1950 (2005)CrossRefzbMATHGoogle Scholar
  30. 30.
    C. Li, A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40, 2487–2499 (2003)CrossRefzbMATHGoogle Scholar
  31. 31.
    H. Wan, F. Delale, A structural mechanics approach for predicting the mechanical properties of carbon nanotubes. Meccanica 45, 43–51 (2010)CrossRefzbMATHGoogle Scholar
  32. 32.
    K. Tserpes, P. Papanikos, Finite element modeling of single-walled carbon nanotubes. Compos. B Eng. 36, 468–477 (2005)CrossRefGoogle Scholar
  33. 33.
    C.-W. Fan, J.-H. Huang, C. Hwu, Y.-Y. Liu, Mechanical properties of single-walled carbon nanotubes—a finite element approach. Adv. Mater. Res. 33–37, 937–942 (2008)CrossRefGoogle Scholar
  34. 34.
    C.W. Fan, Y.Y. Liu, C. Hwu, Finite element simulation for estimating the mechanical properties of multi-walled carbon nanotubes. Appl. Phys. A 95, 819–831 (2009)CrossRefGoogle Scholar
  35. 35.
    C. Li, T.-W. Chou, Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Compos. Sci. Technol. 63, 1517–1524 (2003)CrossRefGoogle Scholar
  36. 36.
    Z. Han, A. Fina, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog. Polym. Sci. 36, 914–944 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mokhtar Awang
    • 1
    Email author
  • Ehsan Mohammadpour
    • 1
  • Ibrahim Dauda Muhammad
    • 2
  1. 1.Department of Mechanical EngineeringUniversiti Teknologi PetronasSeri IskandarMalaysia
  2. 2.Department of Mechanical EngineeringUniversity of AbujaAbujaNigeria

Personalised recommendations