Advertisement

Mechanical Behavior of Carbon Nanotube-Reinforced Polymer Composites

  • Mokhtar AwangEmail author
  • Ehsan Mohammadpour
  • Ibrahim Dauda Muhammad
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nm, or structures having nano-scale repeat distances between the different phases that make up the material. In the broadest sense this definition can include porous media, colloids, gels and copolymers, but is more usually taken to mean the solid combination of a bulk matrix and nano-dimensional phase(s) differing in properties due to dissimilarities in structure and chemistry. The mechanical, electrical, thermal, optical, electrochemical, catalytic properties of the nanocomposite will differ markedly from that of the component materials [1–3].

Keywords

Molybdenum Disulfide Representative Volume Element Tensile Behavior Cohesive Zone Model Color Contour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M.L. Jose-Yacaman, L. Rendon, J. Arenas, M.C.S. Puche, Maya blue paint: an ancient nanostructured material. Science 273(5272), 223–225 (1996)CrossRefGoogle Scholar
  2. 2.
    B.K.G. Theng, Formation and Properties of Clay Polymer Complexes (Elsevier, New York, 1979)Google Scholar
  3. 3.
    P.M. Ajayan, L.S. Schadler, P.V. Braun, Nanocomposite Science and Technology (Wiley, 2003)Google Scholar
  4. 4.
    Zhiting Tian, Hu Han, Ying Sun, A molecular dynamics study of effective thermal conductivity in nanocomposites. Int. J. Heat Mass Transfer 61, 577 (2013)CrossRefGoogle Scholar
  5. 5.
    S. Zhang, D. Sun, Y. Fu, H. Du, Recent advances of superhard nanocomposite coatings: a review. Surf. Coat. Technol. 167(2–3), 13–119 (2003)Google Scholar
  6. 6.
    S. R. Bakshi, D. Lahiri, A. Argawal, Carbon nanotube reinforced metal matrix composites—A Review. Int. Mater. Rev. 55 (2010)Google Scholar
  7. 7.
    Evangelos Manias, Nanocomposites: stiffer by design. Nat. Mater. 6(1), 9–11 (2007)CrossRefGoogle Scholar
  8. 8.
    K. Lau, C. Gu, D. Hui, A critical review on nanotube and nanotube/nanoclay related polymer composite materials. Compos. B Eng. 37, 425–436 (2006)CrossRefGoogle Scholar
  9. 9.
    Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 35, 357–401 (2010)CrossRefGoogle Scholar
  10. 10.
    S. Iijima, Helical microtubules of graphite carbon. Nature 354, 56–58 (1991)CrossRefGoogle Scholar
  11. 11.
    B.I. Yakobson, P. Avouris, Mechanical properties of carbon nanotubes. Topics Appl. Phys 80, 287–327 (2001)CrossRefGoogle Scholar
  12. 12.
    E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997)CrossRefGoogle Scholar
  13. 13.
    J.-P.B. Salvetat, G.A.D. Briggs, J.-M. Bonard, R.R. Bacsa, A.J. Kulik, T. Stöckli, N.A. Burnham, L. Forró, Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82, 944–947 (1999)Google Scholar
  14. 14.
    D.A. Walters, L.M. Ericson, M.J. Casavant, J. Liu, D.T. Colbert, K.A. Smith, R.E. Smalley, Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl. Phys. Lett. 74, 3803–3805 (1999)CrossRefGoogle Scholar
  15. 15.
    H. Wan, F. Delale, A structural mechanics approach for predicting the mechanical properties of carbon nanotubes. Meccanica 45, 43–51 (2009)CrossRefzbMATHGoogle Scholar
  16. 16.
    X.L.C.Y.J. Liu, Evaluations of the effective material properties of carbon nanotube-based composites using a nanoscale representative volume element. Mech. Mater. 35, 9–81 (2003)CrossRefGoogle Scholar
  17. 17.
    M.S. Dresselhaus, G. Dresselhaus, R. Saito, Physics of carbon nanotubes. Carbon 33, 883–891 (1995)CrossRefGoogle Scholar
  18. 18.
    G.M. Odegarda, T.S. Gatesb, L.M. Nicholsonc, K.E. Wised, Equivalent-continuum modeling of nano-structured materials. Composites Science and Technology 62, 1869–1880 (2002)CrossRefGoogle Scholar
  19. 19.
    C. Li, A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40, 2487–2499 (2003)CrossRefzbMATHGoogle Scholar
  20. 20.
    X.L. Chen, Y.J. Liu, Square representative volume elements for evaluating the effective material properties of carbon nanotube-based composites. Comput. Mater. Sci. 29, 1–11 (2004)CrossRefGoogle Scholar
  21. 21.
    R. Andrews, D. Jacques, D. Qian et al., Purification and structural annealing carbon nanotubes at graphitization temperatures. Carbon 39, 1681 (2001)CrossRefGoogle Scholar
  22. 22.
    T. Gates, G. Odegard, S. Frankland, T. Clancy, Computational materials: multi-scale modeling and simulation of nanostructured materials. Compos. Sci. Technol. 65, 2416–2434 (2005)CrossRefGoogle Scholar
  23. 23.
    D.B. Mawhinney, V. Naumenko, A. Kuznetsova et al., Surface defect site density on single walled carbon nanotubes by titration. Chem. Phys. Lett. 6, 213 (2000)CrossRefGoogle Scholar
  24. 24.
    A. Desai, M. Haque, Mechanics of the interface for carbon nanotube–polymer composites. Thin-Walled Struct. 43, 1787–1803 (2005)CrossRefGoogle Scholar
  25. 25.
    C.A. Cooper, S.R. Cohen, A.H. Barber, H.D. Wagner, Detachment of nanotubes from a polymer matrix. Appl. Phys. Lett. 81, 3873–3875 (2002)CrossRefGoogle Scholar
  26. 26.
    D. Qian, E.C. Dickey, Load transfer and deformation Mechanisms in carbon nanotube- polystyrene composites. Phys. Lett. 76 (2000)Google Scholar
  27. 27.
    A. Fereidoon, E. Saeedi, B. Ahmadimoghadam, in World Congress on Engineering, pp. 1381–1385. Comparison between different finite element methods for foreseeing the elastic properties of carbon nanotube reinforced epoxy resin composite, 2008Google Scholar
  28. 28.
    K. Tserpes, P. Papanikos, G. Labeas, S. Pantelakis, Multi-scale modeling of tensile behavior of carbon nanotube-reinforced composites. Theoret. Appl. Fract. Mech. 49, 51–60 (2008)CrossRefGoogle Scholar
  29. 29.
    J. Gou, B. Minaie, B. Wang, Z. Liang, C. Zhang, Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites. Comput. Mater. Sci. 31, 225–236 (2004)CrossRefGoogle Scholar
  30. 30.
    C. Li, T.-W. Chou, Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Compos. Sci. Technol. 63, 1517–1524 (2003)CrossRefGoogle Scholar
  31. 31.
    I. Janowska, S. Hajiesmaili, D. Bégin, V. Keller, N. Keller, M.-J. Ledoux et al., Macronized aligned carbon nanotubes for use as catalyst support and ceramic nanoporous membrane template. Catal. Today 145, 76–84 (2009)CrossRefGoogle Scholar
  32. 32.
    M.R. Piggott, Load Bearing Fibre Composites (Kluwer Academic Publications, 2002)Google Scholar
  33. 33.
    M.W. Hyer, S.R. White, Stress analysis of fiber-reinforced composite materials (DEStech Publications, Inc, 2009)Google Scholar
  34. 34.
    Release, A. N. S. Y. S. 12.0. ANSYS Theory Reference (2009)Google Scholar
  35. 35.
    H. Jiang, P. Zhang, B. Liu, Y. Huang, P.H. Geubelle, H. Gao, The effect of nanotube radius on the constitutive model for carbon nanotubes. Comput. Mater. Sci. 28, 429–442 (2003)CrossRefGoogle Scholar
  36. 36.
    M.A. Bhuiyan, R.V. Pucha, M. Karevan, K. Kalaitzidou, Tensile modulus of carbon nanotube/polypropylene composites—A computational study based on experimental characterization. Comput. Mater. Sci. 50, 2347–2353 (2011)CrossRefGoogle Scholar
  37. 37.
    E.J. Hearn, Mechanics of materials 2: The mechanics of elastic and plastic deformation of solids and structural materials, vol. 2 (Butterworth-Heinemann, 1997)Google Scholar
  38. 38.
    E. Mohammadpour, Numerical and experimental evaluation of carbon nanotube/polypropylene composites using nonlinear finite element modeling (PhD Thesis, Universiti Teknologi Petronas, 2013)Google Scholar
  39. 39.
    S. Nemat-Nasser, M. Hori, Micromechanics: overall properties of heterogeneous materials Second Revised ed (Elsevier, 1999)Google Scholar
  40. 40.
    S.K. Georgantzinos, G.I. Giannopoulos, N.K. Anifantis, Numerical investigation of elastic mechanical properties of graphene structures. Mater. Des. 31, 4646–4654 (2010)CrossRefzbMATHGoogle Scholar
  41. 41.
    P.K. Valavala, G.M. Odegard, Modeling techniques for determination of mechanical properties of polymer nanocomposites. Rev. Adv. Mater. Sci. 9, 34–44 (2005)Google Scholar
  42. 42.
    M.M. Shokrieh, R. Rafiee, Prediction of Young’s modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach. Mater. Des. 31, 790–795 (2010)CrossRefGoogle Scholar
  43. 43.
    K.H. Kim, W.H. Jo, A strategy for enhancement of mechanical and electrical properties of polycarbonate/multi-walled carbon nanotube composites. Carbon 47, 1126–1134 (2009)CrossRefGoogle Scholar
  44. 44.
    J.-P. Salvetat-Delmottea, A. Rubioc, Mechanical properties of carbon nanotubes a fiber digest for beginners. Carbon 40, 1729–1734 (2002)CrossRefGoogle Scholar
  45. 45.
    T. Ogasawara, T. Tsuda, N. Takeda, Stress–strain behavior of multi-walled carbon nanotube/PEEK composites. Compos. Sci. Technol. 71, 73–78 (2011)CrossRefGoogle Scholar
  46. 46.
    P.-C. Ma, N.A. Siddiqui, G. Marom, J.-K. Kim, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos. A Appl. Sci. Manuf. 41, 1345–1367 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mokhtar Awang
    • 1
    Email author
  • Ehsan Mohammadpour
    • 1
  • Ibrahim Dauda Muhammad
    • 2
  1. 1.Department of Mechanical EngineeringUniversiti Teknologi PetronasSeri IskandarMalaysia
  2. 2.Department of Mechanical EngineeringUniversity of AbujaAbujaNigeria

Personalised recommendations