Advertisement

Nanotubes

  • Mokhtar AwangEmail author
  • Ehsan Mohammadpour
  • Ibrahim Dauda Muhammad
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

A nanometer is one-billionth of a meter, or relatively one ten-thousandth of the thickness of a human hair. A nanometer-scale tube-like structure is called nanotube. It may represent carbon nanotube (CNT), silicon nanotube, boron nitride nanotube, inorganic nanotube, DNA nanotube and membrane nanotube comprising of tubular membrane connected in the middle of cells. Nanotubes are similar to a powder or black soot. The CNTs, representing others, are in reality rolled-up sheets of graphene that establish hollow threads having walls with one atom thickness [1].

Keywords

High Resolution Transmission Electron Microscope Boron Nitride High Resolution Transmission Electron Microscope Tungsten Disulfide Atom Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P.J.F. Harris, Carbon Nanotubes and Related Structures, 1st edn. (Cambridge University Press, Cambridge, 2001)Google Scholar
  2. 2.
    C. Yan, J. Liu, F. Liu, J. Wu, K. Gao, D. Xue, Tube formation in nanoscale materials. Nanoscale Res. Lett. 3(12), 473–480 (2008)CrossRefGoogle Scholar
  3. 3.
    S.V. Kuchibhatla, A.S. Karakoti, D. Bera, S. Seal, One dimensional nanostructured materials. Prog. Mater Sci. 52(5), 699–913 (2007)CrossRefGoogle Scholar
  4. 4.
    P. Yang (ed.), The Chemistry of Nanostructured Materials, vol. 2 (World Scientific, Singapore, 2011)Google Scholar
  5. 5.
    C.C. Koch, Nanostructured Materials: Processing, Properties and Applications (William Andrew, Norwich, 2006)Google Scholar
  6. 6.
    R.R.H. Coombs and D.W. Robinsons (eds.), Nanotechnology in Medicine and Biosciences (Gordon and Breach, New York, 1996)Google Scholar
  7. 7.
    R.E. Smalley, B.I. Yakobson, The future of the fullerenes. Solid State Commun. 107, 597–606 (1998)CrossRefGoogle Scholar
  8. 8.
    S. Iijima, Helical microtubules of graphite carbon. Nature 354, 56–58 (1991)CrossRefGoogle Scholar
  9. 9.
    Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 35, 357–401 (2010)CrossRefGoogle Scholar
  10. 10.
    E.T. Thostenson, T.-W. Chou, Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization. J. Phys. D Appl. Phys. 35, 77–80 (2002)CrossRefGoogle Scholar
  11. 11.
    M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996)CrossRefGoogle Scholar
  12. 12.
    E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997)CrossRefGoogle Scholar
  13. 13.
    J.-P.B. Salvetat, G.A.D. Briggs, J.-M. Bonard, R.R. Bacsa, A.J. Kulik, T. Stöckli, N.A. Burnham, L. Forró, Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82, 944–947 (1999)Google Scholar
  14. 14.
    D.A. Walters, L.M. Ericson, M.J. Casavant, J. Liu, D.T. Colbert, K.A. Smith et al., Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl. Phys. Lett. 74, 3803–3805 (1999)CrossRefGoogle Scholar
  15. 15.
    B.I. Yakobson, P. Avouris, Mechanical properties of carbon nanotubes. Topics Appl. Phys 80, 287–327 (2001)CrossRefGoogle Scholar
  16. 16.
    M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637–640 (2000)Google Scholar
  17. 17.
    W. Li, S. Xie, Z. Pan, B. Chang, L. Sun, Mechanical and physical properties on carbon nanotube. J. Phys. Chem. Solids 61, 1153-1158 (2000)Google Scholar
  18. 18.
    M.-F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84, 5552–5555 (2000)CrossRefGoogle Scholar
  19. 19.
    E.T. Thostensona, Z. Renb, T.-W. Choua, Advances in the science and technology of carbon nanotubes and their composites a review. Compos. Sci. Technol. 61, 1899–1912 (2001)CrossRefGoogle Scholar
  20. 20.
    M.S. Dresselhaus, G. Dresselhaus, R. Saito, Physics of carbon nanotubes. Carbon 33, 883–891 (1995)CrossRefGoogle Scholar
  21. 21.
    J. Vera-Agullo, A. Glória-Pereira, H. Varela-Rizo, J.L. Gonzalez, I. Martin-Gullon, Comparative study of the dispersion and functional properties of multiwall carbon nanotubes and helical-ribbon carbon nanofibers in polyester nanocomposites. Compos. Sci. Technol. 69, 1521–1532 (2009)CrossRefGoogle Scholar
  22. 22.
    I. Janowska, S. Hajiesmaili, D. Bégin, V. Keller, N. Keller, M.-J. Ledoux et al., Macronized aligned carbon nanotubes for use as catalyst support and ceramic nanoporous membrane template. Catal. Today 145, 76–84 (2009)CrossRefGoogle Scholar
  23. 23.
    A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRefGoogle Scholar
  24. 24.
    R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, A.K. Bhowmick, A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog. Polym. Sci. 36, 638–670 (2011)CrossRefGoogle Scholar
  25. 25.
    D. Qian, G.J. Wagner, W.K. Liu, M.-F. Yu, R.S. Ruoff, Mechanics of carbon nanotubes. Appl. Mech. Rev. 55, 495–533 (2002)CrossRefGoogle Scholar
  26. 26.
    J. Coleman, U. Khan, W. Blau, Y. Gunko, Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44, 1624–1652 (2006)CrossRefGoogle Scholar
  27. 27.
    S. Wijewardane, Potential applicability of CNT and CNT/composites to implement ASEC concept: a review article. Sol. Energy 83, 1379–1389 (2009)CrossRefGoogle Scholar
  28. 28.
    P.M. Ajayan, T.W. Ebbesen, Nanometre-size tubes of carbon. Rep. Prog. Phys. 60, 1025–1062 (1997)CrossRefGoogle Scholar
  29. 29.
    R. Tenne, C.N.R. Rao, Inorganic nanotubes. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 362(1823), 2099–2125 (2004)CrossRefGoogle Scholar
  30. 30.
    N. Zibouche, A. Kuc, T. Heine, From layers to nanotubes: transition metal disulfides TMS 2. Eur. Phys. J. B: Condens. Matter. Complex Syst. 85, 1–7 (2012)CrossRefGoogle Scholar
  31. 31.
    I.D. Muhammad, M. Awang, O. Mamat and K.Z.K Shaari, Estimating young’s modulus of single-walled zirconia nanotubes using nonlinear finite element modeling. J. Nanomater. (2015)Google Scholar
  32. 32.
    L. A. Girifalco, M. Hodak, and R. S. Lee, Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys. Rev. B 62 (2000)Google Scholar
  33. 33.
    J. Eichler, U. Eisele, J. Rodel, Mechanical properties of monoclinic zirconia. J. Am. Ceram. Soc. 87(7), 1401–1403 (2004)CrossRefGoogle Scholar
  34. 34.
    E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics: elasticity, strength and toughness of nanorods and nanotubes. Science 277, 1997 (1971)Google Scholar
  35. 35.
    T. Shokuhfar, G.K. Arumugam, P.A. Heiden, R.S. Yassar, C. Friedrich, Direct compressive measurements of individual titanium dioxide nanotubes. ACS Nano 3(10), 3098–3102 (2009)CrossRefGoogle Scholar
  36. 36.
    K. Ashiri, R. Tenne, Mechanical properties of WS2 nanotubes. J. Cluster Sci. 18(3), 549–563 (2007)Google Scholar
  37. 37.
    S. Bertolazzi, J. Brivio, A. Kis, Stretching and breaking of ultrathin MoS2. ACS Nano 5(12), 9703–9709 (2011)CrossRefGoogle Scholar
  38. 38.
    A.P. Suryavanshi, M.F. Yu, J. Wen, C. Tang, Y. Bando, Elastic modulus and resonance behavior of boron nitride nanotubes. Appl. Phys. Lett. 84(14), 2527–2529 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mokhtar Awang
    • 1
    Email author
  • Ehsan Mohammadpour
    • 1
  • Ibrahim Dauda Muhammad
    • 2
  1. 1.Department of Mechanical EngineeringUniversiti Teknologi PetronasSeri IskandarMalaysia
  2. 2.Department of Mechanical EngineeringUniversity of AbujaAbujaNigeria

Personalised recommendations