Manufacturing and Post Treatment of SMA Components

  • Ashwin RaoEmail author
  • A. R. Srinivasa
  • J. N. Reddy
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


We would like to briefly review the different manufacturing techniques and post-treatment techniques employed in the SMA community. This is by no means an exhaustive discussion but a broad overview of some important items. As designers, it is important to having an understanding of these details especially as many of these techniques/treatments discussed here influence the performance of the component immensely.


Spark Plasma Sinter Selective Laser Melting Selective Laser Sinter NiTi Alloy Weld Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Elahinia MH, Hashemi M, Tabesh M, Bhaduri SB (2012) Manufacturing and processing of niti implants: a review. Prog Mater Sci 57(5):911–946CrossRefGoogle Scholar
  2. 2.
    Frenzel J, Zhang Z, Neuking K, Eggeler G (2004) High quality vacuum induction melting of small quantities of niti shape memory alloys in graphite crucibles. J Alloy Compd 385(1):214–223CrossRefGoogle Scholar
  3. 3.
    Otubo J, Rigo O, Neto CM, Mei P (2006) The effects of vacuum induction melting and electron beam melting techniques on the purity of niti shape memory alloys. Mater Sci Eng A 438:679–682CrossRefGoogle Scholar
  4. 4.
    Otubo J, Rigo O, Moura Neto C, Kaufman M, Mei P (2003) Scale up of niti shape memory alloy production by ebm. Journal de Physique IV (Proceedings) 112:873–876CrossRefGoogle Scholar
  5. 5.
    Gibson I, Rosen DW, Stucker B (2010) Additive manufacturing technologies: rapid prototyping to direct digital manufacturing. Springer, New YorkCrossRefGoogle Scholar
  6. 6.
    Zhang N, Babayan Khosrovabadi P, Lindenhovius J, Kolster B (1992) Tini shape memory alloys prepared by normal sintering. Mater Sci Eng A 150(2):263–270CrossRefGoogle Scholar
  7. 7.
    Gureev D, Petrov AL, Shishkovsky IV (1999) Formation of intermetallic phases under laser sintering of powdered shs compositions. In: 6th International conference on industrial lasers and laser applications’ 98, pp 237–242. International Society for Optics and PhotonicsGoogle Scholar
  8. 8.
    Yang Y, Huang Y, Wu W (2008) One-step shaping of niti biomaterial by selective laser melting. Proc SPIE 6825:68250C–1Google Scholar
  9. 9.
    McNeese MD, Lagoudas DC, Pollock TC (2000) Processing of tini from elemental powders by hot isostatic pressing. Mater Sci Eng A 280(2):334–348CrossRefGoogle Scholar
  10. 10.
    Park NJ, Lee SJ, Lee IS, Cho KS, Kim SJ (2004) Manufacturing of cu-15.0 zn-8.1 al shape memory alloy using spark plasma sintering. Mater Sci Forum 449:1109–1112 (Trans Tech Publ)Google Scholar
  11. 11.
    Lagoudas DC, Vandygriff EL (2002) Processing and characterization of niti porous sma by elevated pressure sintering. J Intell Mater Syst Struct 13(12):837–850CrossRefGoogle Scholar
  12. 12.
    Shishkovsky I, Yadroitsev I, Smurov I (2012) Direct selective laser melting of nitinol powder. Phys Procedia 39:447–454CrossRefGoogle Scholar
  13. 13.
    Kyogoku H, Ramos J, Bourell D (2002) Laser melting of Ti-Ni shape memory alloy. Proceedings SFF symposium, Austin, pp 668–675Google Scholar
  14. 14.
    Bormann T, Schumacher R, Müller B, de Wild M (2012) From powder to complex-shaped niti structures by selective laser melting. Euro PM2012 Proc 1:193–197Google Scholar
  15. 15.
    Bormann T, Schumacher R, Müller B, Mertmann M, de Wild M (2012) Tailoring selective laser melting process parameters for niti implants. J Mater Eng Perform 21(12):2519–2524CrossRefGoogle Scholar
  16. 16.
    Krone L, Mentz J, Bram M, Buchkremer H-P, Stöver D, Wagner M, Eggeler G, Christ D, Reese S, Bogdanski D et al (2005) The potential of powder metallurgy for the fabrication of biomaterials on the basis of nickel-titanium: a case study with a staple showing shape memory behaviour. Adv Eng Mater 7(7):613–619CrossRefGoogle Scholar
  17. 17.
    Duerig T, Pelton A (1994) Ti-Ni shape memory alloys. Materials properties handbook: titanium alloys, pp 1035–1048Google Scholar
  18. 18.
    Pouquet J, Miranda R, Quintino L, Williams S (2012) Dissimilar laser welding of niti to stainless steel. Inter J Adv Manuf Technol 61(1–4):205–212CrossRefGoogle Scholar
  19. 19.
    Ramaiah K, Saikrishna C, Ranganath V, Buravalla V, Bhaumik S (2011) Fracture of thermally activated niti shape memory alloy wires. Mater Sci Eng A 528(16):5502–5510CrossRefGoogle Scholar
  20. 20.
    NiTinol (2014) Nitinol university—nitinol devices & components, inc.
  21. 21.
    Poncet PP (2000) Nitinol medical device design considerations. Strain 2(4):6Google Scholar
  22. 22.
    Gugel H, Theisen W (2009) Microstructural investigations of laser welded dissimilar nickel-titanium-steel joints. In: Proceedings 8th European symposium on martensitic transformations, pp 7–11Google Scholar
  23. 23.
    Li H, Sun D, Cai X, Dong P, Wang W (2012) Laser welding of tini shape memory alloy and stainless steel using ni interlayer. Mater Des 39:285–293CrossRefGoogle Scholar
  24. 24.
    Li H, Sun D, Gu X, Dong P, Lv Z (2013) Effects of the thickness of cu filler metal on the microstructure and properties of laser-welded tini alloy and stainless steel joint. Mater Des 50:342–350CrossRefGoogle Scholar
  25. 25.
    Hall PC (2002) Laser welding nitinol to stainless steel. In: SMST-2003: Proceedings of the international conference on shape memory and superelastic technologies, pp 5–8Google Scholar
  26. 26.
    Masunaga S, Murata K, Nakamura M, Shiroyama K (1994) Joined parts of ni-ti alloys with different metals and joining method therefore. 25 Oct 1994. US Patent 5,358,796Google Scholar
  27. 27.
    Li H, Sun D, Cai X, Dong P, Gu X (2013) Laser welding of tini shape memory alloy and stainless steel using co filler metal. Opt Laser Technol 45:453–460CrossRefGoogle Scholar
  28. 28.
    Case L, Kreiner Z, Trease B (2004) Shape memory alloy shape training tutorial—a teacher’s guide to teaching sma shape training.
  29. 29.
    Morgan N, Broadley M (2004) Taking the art out of smart!-forming processes and durability issues for the application of niti shape memory alloys in medical devices. In: Medical device materials: proceedings from the materials & processes for medical devices conference 2003, Anaheim, California, p 247, ASM International, 8–10 Sept 2003Google Scholar
  30. 30.
    Liu X, Wang Y, Yang D, Qi M (2008) The effect of ageing treatment on shape-setting and superelasticity of a nitinol stent. Mater Charact 59(4):402–406CrossRefGoogle Scholar
  31. 31.
    Smith S, Hodgson D (2004) Shape setting nitinol. In: Medical device materials: proceedings from the materials & processes for medical devices conference 2003, Anaheim, California, p 266, American Society for Metals, 8–10 Sept 2003Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations