Numerical Investigation of the Influence of Shock Control Bumps on the Buffet Characteristics of a Transonic Airfoil

  • Steffen BogdanskiEmail author
  • Klemens Nübler
  • Thorsten Lutz
  • Ewald Krämer
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 124)


This article presents a numerical investigation on the influence of three-dimensional shock control bumps (SCB) on the effect of transonic buffet. Three different types of SCBs are generated by an optimization for low drag in steady flow conditions at a medium lift coefficient. The impact of these SCB types is then investigated for two different Mach numbers with steady and unsteady RANS methods. It will be shown that all SCBs worsen buffet in terms of buffet onset and buffet amplitudes and shift the shock upstream. The impact is largely independent of the Mach number. Vortex strength and amount of separation in steady conditions are only poor indicators for the buffet inhibition potential of the bumps.


Numerical fluid dynamics Transonic buffet Shock control bumps 


  1. 1.
    Pätzold, M.: Auslegungsstudien zu 3D Shock-Control-Bumps mittels numerischer Optimierung. University of Stuttgart, Dissertation (2008)Google Scholar
  2. 2.
    Corre, C., et al.: Transonic flow control using a NS-solver and a multi-objective genetic algorithm. Mech. Appl. 73, 297–302 (2003)Google Scholar
  3. 3.
    Eastwood, J., Jarett, J.: Towards designing with 3-D bumps for Wing Drag reduction. AIAA 2011–1168 (2011)Google Scholar
  4. 4.
    Gerhold, T.: Overview of the Hybrid RANS Code TAU. In: Kroll, N., Fassbender, J.K. (eds.) Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 89, pp. 81–92. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Menter, F., Egorov, Y.: A scale-adaptive simulation model using two-equation models. AIAA 2005–1095 (2005)Google Scholar
  6. 6.
    Soda, A.: Numerical Investigation of Unsteady transonic Shock/boundary-Layer Interaction for Aeronautical Applications. Dissertation, RWTH Aachen (2006)Google Scholar
  7. 7.
    Streit, T., Horstmann, K.-H., Schrauf, G., Hein, S., Fey, U., Egami, Y., Perraud, J., El Din, I., Cella, U., Quest, J.: Complementary numerical and experimental data analysis of the ETW Telfona Pathfinder wing transition tests. 49th AIAA Aerospace Sciences Meeting, Orlando, AIAA Paper 2011–881 (2011)Google Scholar
  8. 8.
    Pearcey, H., Osborne, J.: The Interaction between Local Effects at the Shock and Rear Separation a Source of Significant Scale Effects in Wind-Tunnel Tests on Airfoils and Wings. AGARD, CP35 (1968)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Steffen Bogdanski
    • 1
    Email author
  • Klemens Nübler
    • 1
  • Thorsten Lutz
    • 1
  • Ewald Krämer
    • 1
  1. 1.Institute of Aerodynamics and Gas DynamicsUniversity of Stuttgart StuttgartGermany

Personalised recommendations