Skip to main content

Superconducting Gallium Implanted Germanium

  • Chapter
Book cover Subsecond Annealing of Advanced Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 192))

  • 1323 Accesses

Abstract

Heavy doping of semiconductors offers a range of new functionalities that make these materials highly attractive for future information processing technologies like spintronics or quantum computing. Similar to ferromagnetism in diluted magnetic semiconductors it is even possible to achieve a superconducting state in heavily doped elemental semiconductors. Superconductivity in doped semiconductors is of increasing interest for both, fundamental research and applied physics. Herein we report on superconducting germanium layers fabricated by gallium ion implantation and subsequent flash lamp- or rapid thermal annealing.

The intent of the following chapter is to provide a brief introduction of the physics of superconducting semiconductors. It is shown that for these materials it is a key challenge to achieve electrically active dopant concentrations well above the metal insulator transition and at the same time to avoid dopant clustering. In strong contrast to all other doping techniques, ion implantation is not limited to the equilibrium solid solubility of the dopants in the host material. Furthermore, it is widely used in nowadays microelectronics technology which makes this process promising for potential applications.

The microstructure and electrical transport of germanium layers implanted with 2 or 4×1016 cm−2 gallium is studied in detail. We extract some information of the influence of gallium rich precipitates that could be formed during ion implantation and subsequent thermal processing on the electrical transport properties. The fabricated layers show p-type conductivity and a charge carrier concentration exceeding the metal insulator transition. This explains a temperature independent resistance in the normal conducting state.

Structural investigations provided by means of Rutherford backscattering spectrometry and transmission electron microscopy reveal distinct differences in the layer morphology depending on the annealing conditions. During flash lamp annealing with a pulse length of 3 milliseconds the layers partly recrystallize via solid phase epitaxy that is stopped by random nucleation and growth leading to a nanocrystalline surface layer. Gallium diffusion and dose loss is clearly suppressed due to the short annealing time. Rapid thermal annealing for 60 seconds provides time enough for a complete solid phase epitaxy. Gallium segregates at the germanium surface during this process. Etching experiments show that the gallium rich regions are responsible for the superconductivity with a critical temperature of 6 K. Therefore, the critical temperature becomes comparable to amorphous gallium films. Based on these findings one can conclude that increasing gallium concentration and thermal budget during annealing lead to gallium segregation which significantly changes the electrical transport and superconducting properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Boeri, J. Kortus, O.K. Anderson, Phys. Rev. Lett. 93, 237002 (2004)

    Article  Google Scholar 

  2. L. Boeri, J. Kortus, O.K. Anderson, J. Phys. Chem. Solids 67, 552 (2006)

    Article  Google Scholar 

  3. E.A. Ekimov, V.A. Sidorov, E.D. Bauer, N.N. Mel’nik, N.J. Curro, J.D. Thompson, S.M. Stishov, Nature (London) 428, 542 (2004)

    Article  Google Scholar 

  4. E. Bustarret, Phys. Status Solidi 205, 997 (2008)

    Article  Google Scholar 

  5. E. Bustarret, C. Marcenat, P. Achatz, J. Kacmarcik, F. Lévy, A. Huxley, L. Ortéga, E. Bourgeois, X. Blasé, D. Débarre, J. Boulmer, Nature (London) 444, 465 (2006)

    Article  Google Scholar 

  6. T. Herrmannsdörfer, V. Heera, O. Ignatchik, M. Uhlarz, A. Mücklich, M. Posselt, H. Reuther, B. Schmidt, K.-H. Heinig, W. Skorupa, M. Voelskow, C. Wündisch, R. Skrotzki, M. Helm, J. Wosnitza, Phys. Rev. Lett. 102, 217003 (2009)

    Article  Google Scholar 

  7. Y. Takano, M. Nagao, I. Sakaguchi, M. Tachiki, T. Hatano, K. Kobayashi, H. Umezawa, H. Kawarada, Appl. Phys. Lett. 85, 2851 (2004)

    Article  Google Scholar 

  8. T. Klein, P. Achatz, J. Kacmarcik, C. Marcenat, F. Gustafsson, J. Marcus, E. Bustarret, J. Pernot, F. Omnes, B.E. Sernelius, C. Persson, A. Ferreira da Silva, C. Cytermann, Phys. Rev. B 75, 165313 (2007)

    Article  Google Scholar 

  9. D. Cammilleri, F. Fossard, D. Débarre, C. Tran Manh, C. Dubois, E. Bustarret, C. Marcenat, P. Achatz, D. Bouchier, J. Boulmer, Thin Solid Films 517, 75 (2008)

    Article  Google Scholar 

  10. E. Simoen, A. Satta, A. D’Amore, T. Janssens, T. Clarysse, K. Martens, B. De Jaeger, A. Benedetti, I. Hoflijk, B. Brijs, M. Meuris, W. Vandervorst, Mater. Sci. Semicond. Process. 9, 634 (2006)

    Article  Google Scholar 

  11. V. Heera, A. Mücklich, M. Posselt, M. Voelskow, C. Wündisch, B. Schmidt, R. Skrotzki, K.H. Heinig, T. Herrmannsdörfer, W. Skorupa, J. Appl. Phys. 107, 053508 (2010)

    Article  Google Scholar 

  12. T. Herrmannsdörfer, R. Skrotzki, V. Heera, O. Ignatchik, M. Uhlarz, A. Mücklich, M. Posselt, B. Schmidt, K.-H. Heinig, W. Skorupa, M. Voelskow, C. Wündisch, M. Helm, J. Wosnitza, Supercond. Sci. Technol. 23, 034007 (2010)

    Article  Google Scholar 

  13. R. Skrotzki, T. Herrmannsdörfer, V. Heera, J. Fiedler, A. Mücklich, M. Helm, J. Wosnitza, Low Temp. Phys. 37, 877 (2011)

    Article  Google Scholar 

  14. T. Tshepe, C. Kasl, J.F. Prins, M.J.R. Hoch, Phys. Rev. B 70, 245107 (2004)

    Article  Google Scholar 

  15. V. Heera, R. Höhne, O. Ignatchik, H. Reuther, P. Esquinazi, Diam. Relat. Mater. 17, 383 (2008)

    Article  Google Scholar 

  16. F. Ruffino, M.V. Tomasello, M. Miritello, G. Nicotra, C. Spinella, M.G. Grimaldi, Appl. Phys. Lett. 96, 093116 (2010)

    Article  Google Scholar 

  17. N. Dubrovinskaia, R. Wirth, J. Wosnitza, T. Papageorgiou, H.F. Braun, N. Miyajima, L. Dubrovinsky, Proc. Natl. Acad. Sci. USA 105, 11619 (2008)

    Article  Google Scholar 

  18. R. Flükiger, W. Klose, Landolt-Börnstein New Series III/21a (Springer, Berlin, 1990), p. 249

    Google Scholar 

  19. H.M. Jaeger, D.B. Haviland, A.M. Goldmann, B.G. Orr, Phys. Rev. B 34, 4920 (1986)

    Article  Google Scholar 

  20. E.V. Charnaya, C. Tien, K.J. Lin, C.S. Wur, Yu.A. Kumzerov, Phys. Rev. B 58, 467 (1998)

    Article  Google Scholar 

  21. E.V. Charnaya, C. Tien, M.K. Lee, Yu.A. Kumzerov, J. Phys. Condens. Matter 21, 455304 (2009)

    Article  Google Scholar 

  22. W. Buckel, R. Kleiner, Superconductivity: Fundamentals and Applications (Wiley-VCH, New York, 2004). Second revised and enlarged edition

    Book  Google Scholar 

  23. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)

    Article  Google Scholar 

  24. D. Pines, Phys. Rev. 109, 280 (1958)

    Article  Google Scholar 

  25. M.L. Cohen, Phys. Rev. 134, A511 (1964)

    Article  Google Scholar 

  26. R.A. Hein, J.W. Gibson, R. Mazelsky, R.C. Miller, J.K. Hulm, Phys. Rev. Lett. 12, 320 (1964)

    Article  Google Scholar 

  27. R.A. Hein, J.W. Gibson, R.S. Allgaier, B.B. Houston Jr., R. Mazelsky, R.C. Miller, in Low Temperature Physics, vol. LT9, ed. by J.G. Daunt et al. (Plenum Press, New York, 1965), p. 604

    Google Scholar 

  28. J.F. Schooley, W.R. Hosler, M.L. Cohen, Phys. Rev. Lett. 12, 474 (1964)

    Article  Google Scholar 

  29. S. Lebègue, Phys. Status Solidi RRL 3, 224 (2009)

    Article  Google Scholar 

  30. D. Jun, L. Zhen-Yu, Y. Jin-Long, Chin. Phys. Lett. 27, 086102 (2010)

    Article  Google Scholar 

  31. S. Franssila, Introduction to Microfabrication (Wiley, Chichester, 2010)

    Book  Google Scholar 

  32. E. Rimini, Ion Implantation: Basics to Device Fabrication (Kluwer Academic, Dordrecht, 1995)

    Book  Google Scholar 

  33. C. Claeys, E. Simoen (eds.), Germanium-Based Technologies—From Materials to Devices (Elsevier, Amsterdam, 2007)

    Google Scholar 

  34. J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985). www.srim.org

    Google Scholar 

  35. W. Möller, W. Eckstein, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 2, 814 (1984)

    Article  Google Scholar 

  36. M.A. Nastasi, J.W. Mayer, J.K. Hirvonen, Ion-Solid Interactions: Fundamentals and Applications (Pergamon, Elmsford, 1996)

    Book  Google Scholar 

  37. J. Bohdansky, Nucl. Instrum. Methods B 2, 587 (1984)

    Article  Google Scholar 

  38. C. Garcia-Rosales, W. Eckstein, J. Roth, J. Nucl. Mater. 218, 8 (1994)

    Article  Google Scholar 

  39. S. Koffel, P. Scheiblin, A. Claverie, G. Benassayag, J. Appl. Phys. 105, 013528 (2009)

    Article  Google Scholar 

  40. I.H. Wilson, J. Appl. Phys. 53, 1698 (1981)

    Article  Google Scholar 

  41. O.W. Holland, B.R. Appleton, J. Narajan, J. Appl. Phys. 54, 2295 (1983)

    Article  Google Scholar 

  42. B. Stritzker, R.G. Elliman, J. Zou, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 175–177, 193 (2001)

    Article  Google Scholar 

  43. T. Janssens, C. Huyghebaert, D. Vanhaeren, G. Winderickx, A. Satta, M. Meuris, W. Vandervorst, J. Vac. Sci. Technol. B 24, 510 (2006)

    Article  Google Scholar 

  44. G. Impellizeri, S. Mirabella, A. Irrera, M.G. Grimaldi, E. Napolitani, J. Appl. Phys. 106, 013518 (2009)

    Article  Google Scholar 

  45. G. Hellings, C. Wuendisch, G. Enemann, E. Simoen, T. Clarysse, M. Meuris, W. Vanderforst, M. Posselt, K. De Meyer, Electrochem. Solid-State Lett. 12, H417 (2009)

    Article  Google Scholar 

  46. E. Simeon, A. Satta, A. D’Amore, T. Janssens, T. Clarysse, K. Martens, B. De Jaeger, A. Benedetti, I. Hoflijk, B. Brijs, M. Meuris, W. Vandervorst, Mater. Sci. Semicond. Process. 9, 634 (2006)

    Article  Google Scholar 

  47. B.L. Darby, B.R. Yates, N.G. Rudawski, K.S. Jones, A. Kontos, R.G. Elliman, Thin Solid Films 519, 5962 (2011)

    Article  Google Scholar 

  48. H. Huber, W. Assmann, S.A. Karamian, A. Mücklich, W. Prusseit, E. Gazis, R. Grötzschel, M. Kokkoris, E. Kossionidis, H.D. Mieskes, R. Vlastou, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 122, 542 (1997)

    Article  Google Scholar 

  49. W. Skorupa, T. Gebel, R.A. Yankov, S. Paul, W. Lerch, D.F. Downey, E.A. Arevalod, J. Electrochem. Soc. 152, G436 (2005)

    Article  Google Scholar 

  50. G.L. Olson, J.A. Roth, Mater. Sci. Rep. 3, 1 (1988)

    Article  Google Scholar 

  51. M. Hansen, Constitution of Binary Alloys, 2nd edn. (McGraw-Hill, New York, 1958)

    Google Scholar 

  52. B.I. Halperin, G. Refael, E. Demler, Resistance in superconductors, in BCS: 50 Years, ed. by L.N. Cooper, D. Feldman (World Scientific, Singapore, 2010)

    Google Scholar 

  53. E. Helfand, N.R. Werthamer, Phys. Rev. Lett. 13, 686 (1964)

    Article  Google Scholar 

  54. E. Helfand, N.R. Werthamer, Phys. Rev. 147, 288 (1966)

    Article  Google Scholar 

  55. N.R. Werthamer, E. Helfand, P.C. Hohenberg, Phys. Rev. 147, 295 (1966)

    Article  Google Scholar 

  56. A. Dargys, J. Kundrotas, Handbook on Physical Properties of Ge, Si, GaAs and InP (Science and Encyclopedia, Vilnius, 1994)

    Google Scholar 

  57. D. Shoenberg, Proc. R. Soc. Lond. A 175, 49 (1940)

    Article  Google Scholar 

  58. A. Gerber, T. Grenet, M. Cyrot, J. Beille, Phys. Rev. Lett. 65, 3201 (1990)

    Article  Google Scholar 

  59. R. Skrotzki, J. Fiedler, T. Herrmannsdörfer, V. Heera, M. Voelskow, A. Mücklich, B. Schmidt, W. Skorupa, G. Gobsch, M. Helm, J. Wosnitza, Appl. Phys. Lett. 97, 192505 (2010)

    Article  Google Scholar 

  60. J. Fiedler, V. Heera, R. Skrotzki, T. Herrmannsdörfer, M. Voelskow, A. Mücklich, S. Oswald, B. Schmidt, W. Skorupa, G. Gobsch, J. Wosnitza, M. Helm, Phys. Rev. B 83, 214504 (2011)

    Article  Google Scholar 

  61. V. Heera, J. Fiedler, M. Voelskow, A. Mücklich, R. Skrotzki, T. Herrmannsdörfer, W. Skorupa, Appl. Phys. Lett. 100, 262602 (2012)

    Article  Google Scholar 

  62. T. Fischer, A.V. Pronin, R. Skrotzki, T. Herrmannsdörfer, J. Wosnitza, J. Fiedler, V. Heera, M. Helm, E. Schachinger, Phys. Rev. B 87, 014502 (2013)

    Article  Google Scholar 

  63. J. Fiedler, V. Heera, M. Voelskow, A. Mücklich, H. Reuther, W. Skorupa, G. Gobsch, M. Helm, Acta Phys. Pol. A 123, 916 (2013)

    Article  Google Scholar 

  64. V. Heera, J. Fiedler, R. Hübner, B. Schmidt, M. Voelskow, W. Skorupa, R. Skrotzki, T. Herrmannsdörfer, J. Wosnitza, M. Helm, New J. Phys. 15, 083022 (2013)

    Article  Google Scholar 

  65. J. Fiedler, V. Heera, R. Skrotzki, T. Herrmannsdörfer, M. Voelskow, A. Mücklich, S. Facsko, H. Reuther, M. Perego, K.-H. Heinig, B. Schmidt, W. Skorupa, G. Gobsch, M. Helm, Phys. Rev. B 85, 134530 (2012)

    Article  Google Scholar 

  66. E. Simoen, A. Satta, A. D’Amore, T. Janssens, T. Clarysse, K. Martens, B. De Jaeger, A. Benedetti, I. Hoflijk, B. Brijs, M. Meuris, W. Vandervorst, Mater. Sci. Semicond. Process. 9, 634 (2006)

    Article  Google Scholar 

  67. M. Py, E. Saracco, J.F. Damlencourt, J.P. Barnes, J.M. Fabbri, J.M. Hartmann, Appl. Surf. Sci. 257, 9414 (2011)

    Article  Google Scholar 

  68. A.S. Grove, O. Leistiko Jr., C.T. Sah, J. Phys. Chem. Solids 25, 985 (1964)

    Article  Google Scholar 

  69. U. Södervall, H. Odelius, A. Lodding, U. Roll, B. Predel, W. Gust, P. Dorner, Philos. Mag. A 54, 539 (1986)

    Article  Google Scholar 

  70. P.M. Zagwijn, W.J. Huisman, A. Polman, E. Vlieg, A.H. Reader, D.J. Gravesteijn, J. Appl. Phys. 76, 5719 (1994)

    Article  Google Scholar 

  71. I. Riihimäki, A. Virtanen, S. Rinta-Anttila, P. Pusa, J. Räisänen (The ISOLDE Collaboration), Appl. Phys. Lett. 91, 091922 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

Last but not least, the authors acknowledge helpful discussions and experimental contributions of following persons: F. Arnold, M. Bartkowiak, R. Beyerl, S. Facsko, G. Gobsch, M. Helm, T. Herrmannsdörfer, H. Hortenbach, O. Ignatchik, M. Uhlarz, A. Mücklich, M. Posselt, H. Reuther, B. Schmidt, T. Schumann, W. Skorupa, R. Skrotzki, S. Teichert, M. Voelskow, C. Wündisch, J. Wosnitza.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Fiedler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fiedler, J., Heera, V. (2014). Superconducting Gallium Implanted Germanium. In: Skorupa, W., Schmidt, H. (eds) Subsecond Annealing of Advanced Materials. Springer Series in Materials Science, vol 192. Springer, Cham. https://doi.org/10.1007/978-3-319-03131-6_4

Download citation

Publish with us

Policies and ethics