Skip to main content

Metastable Activation of Dopants by Solid Phase Epitaxial Recrystallisation

  • Chapter
Subsecond Annealing of Advanced Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 192))

  • 1347 Accesses

Abstract

The ideal ultrashallow junction relies on (i) high dopant solubility in the crystalline substrate, in order to boost activation and reduce sheet resistance, and (ii) low dopant diffusivity, to facilitate device scaling. Equilibrium solubility is not sufficient to meet the aggressive access resistance targets at advanced device dimensions, thus above-equilibrium metastable solubility must be generated.

A technique to generate such metastable solubilities involves amorphisation of the target silicon substrate, followed by recrystallisation via thermal annealing thereafter. The recrystallisation process is very efficient in placing impurity atoms onto substitutional positions within the semiconductor crystal lattice. The formation of metastable solubility requires care during subsequent processing because further supply of thermal energy, e.g. by back-end processing, causes the metastable condition to revert back to the lower equilibrium state. An approach to control deactivation is by co-implantation of non-dopant species, such as carbon, fluorine, or nitrogen. These species can sink point defects that cause metastable-activation deactivation. Implanting at cryogenic temperatures has also proved successful at reducing defect populations.

Control of diffusion, to facilitate junction and device scaling, can be achieved by reducing the thermal budget of the annealing process. In silicon applications high-temperature millisecond anneals (laser and flash) are popular. Reduced thermal budget via a low-temperature process such as solid-phase-epitaxial-recrystallisation appears to achieve similar results in many regards. Note, anomalous diffusion effects prior, during, and after recrystallisation can be detrimental and cannot be ignored.

In summary, impurity solubilities of group III and V elements in silicon resulting from solid-phase-epitaxial-recrystallisation can beat the maximum equilibrium values by approximately one to two orders of magnitude. This can help reduce parasitic resistances significantly and be of great benefit to the electrical performance of advanced silicon devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.L. Olson, J.A. Roth, Mater. Sci. Rep. 3, 1 (1988)

    Article  Google Scholar 

  2. L. Pelaz, L.A. Marques, J. Barbolla, J. Appl. Phys. 96, 5947 (2004)

    Article  Google Scholar 

  3. S. Pantelides, Solid State Commun. 84, 221 (1992)

    Article  Google Scholar 

  4. S. Roorda, W.C. Sinke, J.M. Poate, D.C. Jacobson, S. Dierker, B.S. Dennis, D.J. Eaglesham, F. Spaepen, P. Fuoss, Phys. Rev. B 44, 3702 (1991)

    Article  Google Scholar 

  5. S. Roorda, S. Doorn, W.C. Sinke, P.M.L.O. Scholte, E. Van Loenen, Phys. Rev. Lett. 62, 1880 (1989)

    Article  Google Scholar 

  6. W. Lerch, S. Paul, D.F. Downey, E.A. Arevalo, Proc., Electrochem. Soc. 2003(14), 43 (2003)

    Google Scholar 

  7. L. Csepregi, J.W. Mayer, T.W. Sigmon, Appl. Phys. Lett. 29, 92 (1976)

    Article  Google Scholar 

  8. L. Csepregi, R.P. Küllen, J.W. Mayer, T.W. Sigmon, Solid State Commun. 21, 1019 (1977)

    Article  Google Scholar 

  9. J.S. Williams, R.G. Elliman, Nucl. Instrum. Methods 182/183, 389 (1981)

    Article  Google Scholar 

  10. Y. Tamminga, W.J.M.J. Josquin, Appl. Phys. Lett. 32, 13 (1978)

    Article  Google Scholar 

  11. J.S. Williams, R.G. Elliman, Appl. Phys. Lett. 37, 829 (1980)

    Article  Google Scholar 

  12. F.A. Trumbore, Bell Syst. Tech. J. 39, 205 (1960)

    Article  Google Scholar 

  13. P. Pichler, Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon (Springer, Berlin, 2004)

    Book  Google Scholar 

  14. J.S. Williams, Nucl. Instrum. Methods Phys. Res. 209/210, 219 (1983)

    Article  Google Scholar 

  15. J. Narayan, O.W. Holland, Appl. Phys. Lett. 41, 239 (1982)

    Article  Google Scholar 

  16. C.W. White, S.R. Wilson, B.R. Appleton, F.W. Young Jr., J. Appl. Phys. 51, 738 (1980)

    Article  Google Scholar 

  17. R. Duffy, T. Dao, Y. Tamminga, K. van der Tak, F. Roozeboom, E. Augendre, Appl. Phys. Lett. 89, 071915 (2006)

    Article  Google Scholar 

  18. E. Landi, S. Guimaraes, S. Solmi, Appl. Phys. A 44, 135 (1987)

    Article  Google Scholar 

  19. N.E.B. Cowern, G. Mannino, P.A. Stolk, F. Roozeboom, H.G.A. Huizing, J.G.M. van Berkum, F. Cristiano, A. Claverie, M. Jaraíz, Phys. Rev. Lett. 82, 4460 (1999)

    Article  Google Scholar 

  20. F. Cristiano, Y. Lamrani, F. Severac, M. Gavelle, S. Boninelli, N. Cherkashin, O. Marcelot, A. Claverie, W. Lerch, S. Paul, N. Cowern, R. Duffy, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 253, 68 (2006)

    Article  Google Scholar 

  21. R. Duffy, M. Aboy, V.C. Venezia, L. Pelaz, S. Severi, B.J. Pawlak, P. Eyben, T. Janssens, W. Vandervorst, J. Loo, F. Roozeboom, IEEE Trans. Electron Devices 53, 71 (2006)

    Article  Google Scholar 

  22. S.H. Jain, P.B. Griffin, J.D. Plummer, S. McCoy, J. Gelpey, T. Selinger, D.F. Downey, IEEE Trans. Electron Devices 52, 1610 (2005)

    Article  Google Scholar 

  23. S. Earles, M. Law, R. Brindos, K. Jones, S. Talwar, S. Corcoran, IEEE Trans. Electron Devices 49, 1118 (2002)

    Article  Google Scholar 

  24. R. Duffy, A. Heringa, V.C. Venezia, J. Loo, M.A. Verheijen, M.J.P. Hopstaken, K. van der Tak, M. de Potter, J.C. Hooker, P. Meunier-Beillard, R. Delhougne, Solid-State Electron. 54, 243 (2010)

    Article  Google Scholar 

  25. C. Claeys, E. Simoen, A. Poyai, A. Czerwinski, J. Electrochem. Soc. 146, 3429 (1999)

    Article  Google Scholar 

  26. D.K. Schröder, IEEE Trans. Electron Devices 44, 160 (1997)

    Article  Google Scholar 

  27. W. Lerch, S. Paul, J. Niess, F. Cristiano, Y. Lamrani, P. Calvo, N. Cherkashin, D.F. Downey, E.A. Arevalo, J. Electrochem. Soc. 152, G787 (2005)

    Article  Google Scholar 

  28. N.E.B. Cowern, B. Colombeau, J. Benson, A.J. Smith, W. Lerch, S. Paul, T. Graf, F. Cristiano, X. Hebras, D. Bolze, Appl. Phys. Lett. 86, 101905 (2005)

    Article  Google Scholar 

  29. L. Pelaz, M. Jaraiz, G.H. Gilmer, H.-J. Gossmann, C.S. Rafferty, D.J. Eaglesham, J.M. Poate, Appl. Phys. Lett. 70, 2285 (1997)

    Article  Google Scholar 

  30. L. Pelaz, G.H. Gilmer, H.-J. Gossmann, C.S. Rafferty, M. Jaraiz, J. Barbolla, Appl. Phys. Lett. 74, 3657 (1999)

    Article  Google Scholar 

  31. G. Mannino, S. Solmi, V. Privitera, M. Bersani, Appl. Phys. Lett. 79, 3764 (2001)

    Article  Google Scholar 

  32. P. Pichler, Mater. Res. Soc. Symp. Proc. 717, 103–114 (2002)

    Google Scholar 

  33. M. Aboy, L. Pelaz, L.A. Marques, P. López, J. Barbolla, R. Duffy, J. Appl. Phys. 97, 103520 (2005)

    Article  Google Scholar 

  34. B.J. Pawlak, R. Surdeanu, B. Colombeau, A.J. Smith, N.E.B. Cowern, R. Lindsay, W. Vandervorst, B. Brijs, O. Richard, F. Cristiano, Appl. Phys. Lett. 84, 2055 (2004)

    Article  Google Scholar 

  35. A.J. Sharp, N.E.B. Cowern, R.P. Webb, K.J. Kirkby, D. Giubertoni, S. Gennaro, M. Bersani, M.A. Foad, F. Cristiano, P.F. Fazzini, Appl. Phys. Lett. 89, 192105 (2006)

    Article  Google Scholar 

  36. E. Schroer, M. Uematsu, Jpn. J. Appl. Phys. Part 1 38, 7 (1999)

    Article  Google Scholar 

  37. M. Uematsu, Jap. J. Appl. Phys. Part 1(38), 6188 (1999)

    Article  Google Scholar 

  38. Y. Takamura, S. Jain, P.B. Griffin, J.D. Plummer, J. Appl. Phys. 92, 230 (2002)

    Article  Google Scholar 

  39. Y. Takamura, P.B. Griffin, J.D. Plummer, J. Appl. Phys. 92, 235 (2002)

    Article  Google Scholar 

  40. R. Pinacho, M. Jaraiz, P. Castrillo, I. Martin-Bragado, J.E. Rubio, J. Barbolla, Appl. Phys. Lett. 86, 252103 (2005)

    Article  Google Scholar 

  41. R.O. Schwenker, E.S. Pan, R.F. Lever, J. Appl. Phys. 42, 3195 (1971)

    Article  Google Scholar 

  42. S.A. Harrison, T.F. Edgar, G.S. Hwang, Electrochem. Solid-State Lett. 9, G354 (2006)

    Article  Google Scholar 

  43. S.A. Harrison, T.F. Edgar, G.S. Hwang, Appl. Phys. Lett. 87, 231905 (2006)

    Article  Google Scholar 

  44. S. Solmi, D. Nobili, J. Shao, J. Appl. Phys. 87, 658 (2000)

    Article  Google Scholar 

  45. S. Solmi, D. Nobili, J. Shao, J. Appl. Phys. 90, 101 (2001)

    Article  Google Scholar 

  46. D. Nobili, S. Solmi, M. Merli, J. Shao, J. Electrochem. Soc. 146, 4246 (1999)

    Article  Google Scholar 

  47. P.M. Rousseau, P.B. Griffin, W.T. Fang, J.D. Plummer, J. Appl. Phys. 84, 3593 (1998)

    Article  Google Scholar 

  48. J.S. Williams, Nucl. Instrum. Methods 209/210, 219 (1983)

    Article  Google Scholar 

  49. J.M. Jacques, L.S. Robertson, K.S. Jones, M.E. Law, M. Rendon, J. Bennett, Appl. Phys. Lett. 82, 3469 (2003)

    Article  Google Scholar 

  50. R. Duffy, V.C. Venezia, A. Heringa, B.J. Pawlak, M.J.P. Hopstaken, G.C.J. Maas, Y. Tamminga, T. Dao, F. Roozeboom, L. Pelaz, Appl. Phys. Lett. 84, 4283 (2004)

    Article  Google Scholar 

  51. R.G. Elliman, S.M. Hogg, P. Kringhoj, IEEE Conf. on Ion Impl. Tech. (1999), p. 1055

    Google Scholar 

  52. G.R. Nash, J.F.W. Schiz, C.D. Marsh, P. Ashburn, G.R. Booker, Appl. Phys. Lett. 75, 3671 (1999)

    Article  Google Scholar 

  53. D.C. Streit, J. Vac. Sci. Technol. B 5, 752 (1987)

    Article  Google Scholar 

  54. S. Coffa, J.M. Poate, D.C. Jacobson, W. Frank, W. Gustin, Phys. Rev. B 45, 8355 (1992)

    Article  Google Scholar 

  55. R.A. Street, C.C. Tsai, J. Kakalios, W.B. Jackson, Philos. Mag. B 56, 305 (1987)

    Article  Google Scholar 

  56. A.Y. Kuznetsov, Appl. Phys. Lett. 66, 2229 (1995)

    Article  Google Scholar 

  57. V.C. Venezia, R. Duffy, L. Pelaz, M.J.P. Hopstaken, G.C.J. Maas, T. Dao, Y. Tamminga, P. Graat, Mater. Sci. Eng. B 124–125, 245 (2005)

    Article  Google Scholar 

  58. S. Mirabella, D. De Salvador, E. Bruno, E. Napolitani, E.F. Pecora, S. Boninelli, F. Priolo, Phys. Rev. Lett. 100, 155901 (2008)

    Article  Google Scholar 

  59. R. Duffy, V.C. Venezia, A. Heringa, B.J. Pawlak, M.J.P. Hopstaken, Y. Tamminga, T. Dao, F. Roozeboom, C.C. Wang, C.H. Diaz, P.B. Griffin, J. Vac. Sci. Technol. B 22, 865 (2004)

    Article  Google Scholar 

  60. R. Duffy, V.C. Venezia, K. van der Tak, M.J.P. Hopstaken, G.C.J. Maas, F. Roozeboom, Y. Tamminga, T. Dao, J. Vac. Sci. Technol. B 23, 2021 (2005)

    Article  Google Scholar 

  61. J.S. Williams, Nucl. Instrum. Methods 209/210, 219 (1983)

    Article  Google Scholar 

  62. W. Scott, R.J. Hager, J. Electron. Mater. 8, 581 (1979)

    Article  Google Scholar 

  63. R.G. Elliman, Z.W. Fang, J. Appl. Phys. 73, 3313 (1993)

    Article  Google Scholar 

  64. R.G. Elliman, D.C. Jacobson, J. Linnros, J.M. Poate, Appl. Phys. Lett. 51, 314 (1987)

    Article  Google Scholar 

  65. M.J. Aziz, J. Appl. Phys. 53, 1158 (1982)

    Article  Google Scholar 

  66. M.J. Aziz, Appl. Phys. Lett. 43, 552 (1983)

    Article  Google Scholar 

  67. M.J. Aziz, Phys. Rev. Lett. 56, 2489 (1986)

    Article  Google Scholar 

  68. H.C.H. Wang, C.-C. Wang, C.-S. Chang, T. Wang, P.B. Griffin, C.H. Diaz, IEEE Electron Device Lett. 22, 65 (2001)

    Article  Google Scholar 

  69. R. Duffy, V.C. Venezia, A. Heringa, T.W.T. Hüsken, M.J.P. Hopstaken, N.E.B. Cowern, P.B. Griffin, C.C. Wang, Appl. Phys. Lett. 82, 3647 (2003)

    Article  Google Scholar 

  70. M. Ferri, S. Solmi, D. Giubertoni, M. Bersani, J.J. Hamilton, M. Kah, K. Kirkby, E.J.H. Collart, N.E.B. Cowern, J. Appl. Phys. 102, 103707 (2007)

    Article  Google Scholar 

  71. R. Duffy, V.C. Venezia, J. Loo, M.J.P. Hopstaken, M.A. Verheijen, J.G.M. Van Berkum, G.C.J. Maas, Y. Tamminga, T. Dao, C. Demeurisse, Appl. Phys. Lett. 86, 081917 (2005)

    Article  Google Scholar 

  72. S. Ruffell, I.V. Mitchell, P.J. Simpson, J. Appl. Phys. 97, 123518 (2005)

    Article  Google Scholar 

  73. M.J.P. Hopstaken, Y. Tamminga, M.A. Verheijen, R. Duffy, V.C. Venezia, A. Heringa, Appl. Surf. Sci. 231–232, 688 (2004)

    Article  Google Scholar 

  74. M. Ferri, S. Solmi, A. Parisini, M. Bersani, D. Giubertoni, M. Barozzi, J. Appl. Phys. 99, 113508 (2006)

    Article  Google Scholar 

  75. S.-P. Jeng, T.-P. Ma, R. Canteri, M. Anderle, G.W. Rubloff, Appl. Phys. Lett. 61, 1310 (1992)

    Article  Google Scholar 

  76. G. Impellizzeri, S. Mirabella, F. Priolo, E. Napolitani, A. Carnera, J. Appl. Phys. 99, 103510 (2006)

    Article  Google Scholar 

  77. S. Paul, W. Lerch, B. Colombeau, N.E.B. Cowern, F. Cristiano, S. Boninelli, D. Bolze, J. Vac. Sci. Technol., B Microelectron. Nanometer Struct. Process. Meas. Phenom. 24, 437 (2006)

    Article  Google Scholar 

  78. S. Nishikawa, A. Tanaka, T. Yamaji, Appl. Phys. Lett. 60, 2270 (1992)

    Article  Google Scholar 

  79. B.J. Pawlak, T. Janssens, B. Brijs, W. Vandervorst, E.J.H. Collart, S.B. Felch, N.E.B. Cowern, Appl. Phys. Lett. 89, 062110 (2006)

    Article  Google Scholar 

  80. Y. Shimizu, H. Takamizawa, K. Inoue, T. Toyama, Y. Nagai, N. Okada, M. Kato, H. Uchida, F. Yano, T. Tsunomura, A. Nishida, T. Mogami, Appl. Phys. Lett. 98, 232101 (2011)

    Article  Google Scholar 

  81. M. Uematsu, J. Appl. Phys. 111, 073517 (2012)

    Article  Google Scholar 

  82. B.J. Pawlak, R. Duffy, T. Janssens, W. Vandervorst, S.B. Felch, E.J.H. Collart, N.E.B. Cowern, Appl. Phys. Lett. 89, 062102 (2006)

    Article  Google Scholar 

  83. K.C. Ku, C.F. Nieh, J. Gong, L.P. Huang, Y.M. Sheu, C.C. Wang, C.H. Chen, H. Chang, L.T. Wang, T.L. Lee, S.C. Chen, M.S. Liang, Appl. Phys. Lett. 89, 112104 (2006)

    Article  Google Scholar 

  84. N. Cagnat, D. Mathiot, C. Laviron, J. Appl. Phys. 102, 106102 (2007)

    Article  Google Scholar 

  85. L.S. Adam, M.E. Law, K.S. Jones, O. Dokumaci, C.S. Murthy, S. Hegde, J. Appl. Phys. 87, 2282 (2000)

    Article  Google Scholar 

  86. E. Simoen, A. Satta, A. D’Amore, T. Janssens, T. Clarysse, K. Martens, B. De Jaeger, A. Benedetti, I. Hoflijk, B. Brijs, M. Meuris, W. Vandervorst, Mater. Sci. Semicond. Process. 9, 634 (2006)

    Article  Google Scholar 

  87. A. Claverie, F. Cristiano, M. Gavelle, F. Sévérac, F. Cayrel, D. Alquier, W. Lerch, S. Paul, L. Rubin, V. Raineri, F. Giannazzo, H. Jaouen, A. Pakfar, A. Halimaoui, C. Armand, N. Cherkashim, O. Marcelot, Mater. Res. Soc. Symp. Proc. 1070, 3–14 (2008)

    Google Scholar 

  88. V.C. Venezia, T.E. Haynes, A. Agarwal, L. Pelaz, H.-J. Gossmann, D.C. Jacobson, D.J. Eaglesham, Appl. Phys. Lett. 74, 1299 (1999)

    Article  Google Scholar 

  89. N.E.B. Cowern, A.J. Smith, N. Bennett, B.J. Sealy, R. Gwilliam, R.P. Webb, B. Colombeau, S. Paul, W. Lerch, A. Pakfar, Mater. Sci. Forum 573–574, 295 (2008)

    Article  Google Scholar 

  90. A. Nejim, B.J. Sealy, Semicond. Sci. Technol. 18, 839 (2003)

    Article  Google Scholar 

  91. R. Gwilliam, N.E.B. Cowern, B. Colombeau, B. Sealy, A.J. Smith, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 261, 600 (2007)

    Article  Google Scholar 

  92. A. Murakoshi, K. Suguro, M. Iwase, M. Tomita, K. Okumura, Mater. Res. Soc. Symp. Proc. 610, B3.8.1–B3.8.6 (2000)

    Google Scholar 

  93. F.A. Khaja, B. Colombeau, T. Thanigaivelan, D. Ramappa, T. Henry, Appl. Phys. Lett. 100, 112102 (2012)

    Article  Google Scholar 

  94. International Technology Roadmap For Semiconductors, 2011 Edition, Emerging Research Devices

    Google Scholar 

  95. International Technology Roadmap For Semiconductors, Edition, Emerging Research Materials. (2011)

    Google Scholar 

  96. F. Priolo, E. Rimini, Mater. Sci. Rep. 5, 319 (1990)

    Article  Google Scholar 

  97. Y. Kunii, M. Tabe, K. Kajiyama, J. Appl. Phys. 54, 2847 (1983)

    Article  Google Scholar 

  98. H. Ishiwara, H. Yamamoto, S. Furukawa, M. Tamura, T. Tokuyama, Appl. Phys. Lett. 43, 1028 (1983)

    Article  Google Scholar 

  99. Y. Kunii, M. Tabe, K. Kajiyama, J. Appl. Phys. 56, 279 (1984)

    Article  Google Scholar 

  100. H. Yamamoto, H. Ishiwara, S. Furukawa, Appl. Phys. Lett. 46, 268 (1985)

    Article  Google Scholar 

  101. M. Sasaki, T. Katoh, H. Onoda, N. Hirashita, Appl. Phys. Lett. 49, 397 (1986)

    Article  Google Scholar 

  102. E. Murakami, M. Moniwa, K. Kusukawa, M. Miyao, T. Warabisako, Y. Wada, J. Appl. Phys. 63, 4975 (1988)

    Article  Google Scholar 

  103. M. Miyao, M. Moniwa, K. Kusukawa, W. Sinke, J. Appl. Phys. 64, 3018 (1988)

    Article  Google Scholar 

  104. K.K. Dezfulian, J.P. Krusius, M.O. Thompson, S. Talwar, Appl. Phys. Lett. 81, 2238 (2002)

    Article  Google Scholar 

  105. R. Duffy, M.J.H. Dal Van, B.J. Pawlak, M. Kaiser, R.G.R. Weemaes, B. Degroote, E. Kunnen, E. Altamirano, Appl. Phys. Lett. 90, 241912 (2007)

    Article  Google Scholar 

  106. R. Drosd, J. Washburn, J. Appl. Phys. 53, 397 (1982)

    Article  Google Scholar 

  107. S. Felch, C. Hobbs, J. Barnett, H. Etienne, J. Duchaine, M. Rodgers, S. Bennett, F. Torregrosa, Y. Spiegel, L. Roux, Extended Abstracts of the 11th International Workshop on Junction Technology, IWJT 2011, art. no. 5969992, pp. 22–25

    Google Scholar 

  108. D. Lenoble, K.G. Anil, A. de Keersgieter, P. Eyben, N. Collaert, R. Rooyackers, S. Brus, P. Zimmerman, M. Goodwin, D. Vanhaeren, W. Vandervorst, S. Radovanov, L. Godet, C. Cardinaud, S. Biesemans, T. Skotnicki, M. Jurczak, Digest of Technical Papers—Symposium on VLSI Technology 2006, art. no. 1705270, pp. 168–169

    Google Scholar 

  109. J.C. Ho, R. Yerushalmi, Z.A. Jacobson, Z. Fan, R.L. Alley, A. Javey, Nat. Mater. 7, 62 (2008)

    Article  Google Scholar 

  110. J.C. Ho, R. Yerushalmi, G. Smith, P. Majhi, J. Bennett, J. Halim, V.N. Faifer, A. Javey, Nanoletters 9, 725 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Duffy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Duffy, R. (2014). Metastable Activation of Dopants by Solid Phase Epitaxial Recrystallisation. In: Skorupa, W., Schmidt, H. (eds) Subsecond Annealing of Advanced Materials. Springer Series in Materials Science, vol 192. Springer, Cham. https://doi.org/10.1007/978-3-319-03131-6_3

Download citation

Publish with us

Policies and ethics