Environmental Responses to Climatic and Cultural Changes

  • Ana M. Abarzúa
  • Alia G. Pinchicura
  • Leonora Jarpa
  • Alejandra Martel-Cea
  • Mieke Sterken
  • Rodrigo Vega
  • Mario Pino Q.
Part of the Contributions To Global Historical Archaeology book series (CGHA, volume 38)


Geological sediment cores from the Purén-Lumaco Valley are analyzed for the sedimentological, geochemical, pollen, chironomids, diatoms, and charcoal patterns during the last 26 years.


Ecology Sediments Pollen Puren Lumaco Holocene 



Prof. V. Markgraf, Prof. J. Armesto, and Dr(c) J.P. Francois provided helpful comments, suggestions, and English corrections on an earlier version of the manuscript. We greatly appreciate the field support from Dr. Tom D. Dillehay, Dr. A. Maldonado, F. Ríos, and M. Sepúlveda. We thank the laboratory assistance of Dr. J. Wallner, Dr. G. Daut, Dr. H. Schneider, Ms. B. Dressler, and Ms. C. Kirchner. This chapter has been produced with the financial support from the Universidad Austral de Chile (DID 2007–08, FORECOS P04–065-F and Fondecyt 3110099 Projects), Araucanian Policy Formation in Chile-Project (BSN-34567–04), European Union within the ALFA-Project EUFORLA (AML/19.0902/970666/II-0455-FC), the Institute of Geography, the Friedrich-Schiller University of Jena, and the doctoral fellowship from CONICYT-Chile. Thanks are also extended to the National Science Foundation and the National Geographic Society of the United States for supporting Dillehay’s research in the valley.


  1. Abarzúa, A. M., Moreno, P. I. (2008). Changing fire regimes in the temperate rainforest region of Southern Chile over the last 16,000 years. Quaternary Research, 69, 62–71.CrossRefGoogle Scholar
  2. Abarzúa, A.M., Villagrán, C., Moreno, P. I. (2004). Deglacial and postglacial climate history in east-central Isla Grande de Chiloé, southern Chile (43 °S). Quaternary Research, 62, 49–59.CrossRefGoogle Scholar
  3. Aceituno, P. (1988). On the functioning of the southern oscillation in the South American sector. Part 1: Surface climate. Monthly Weather Review, 116, 505–524.CrossRefGoogle Scholar
  4. Aldunate, C., & Villagrán C. (1991). Recolectores de los bosques templados del cono sur Americano. In W. M. Ernesto (Ed.), Botánica indígena de Chile (pp. 23–40). Santiago: Editorial Andrés Bello.Google Scholar
  5. Amigo, J., & Ramírez, C. (1998). A bioclimatic classification of Chile, woodland communities in the temperate zone. Plant Ecology, 136, 9–26.CrossRefGoogle Scholar
  6. Arroyo, M. T. K., Cavieres, L. A., Peñaloza, A., Riveros, M., Faggi, A.M. (1995). Relaciones fitogeográficas y patrones regionales de riqueza de especies en la flora del bosque lluvioso templado de Sudamérica. In J. J. Armesto, C. Villagrán, & M. T. K. Arroyo (Eds.), Ecología de los bosques nativos de Chile (pp. 71–99). Comité de publicaciones científicas, Vicerrectoría Académica, Universidad de Chile. Santiago: Editorial Universitaria.Google Scholar
  7. Battarbee, R. (2000). Palaeolimnological approaches to climate change, with special regard to the biological record. Quaternary Science Reviews, 19, 107–124.CrossRefGoogle Scholar
  8. Bekessy, S. A., Allnutt, T. R., Premoli, A.C., Antonio, L., Ennos, R. A., Burgman, M. A., Cortes, M., & Newton, A. C. (2002). Genetic variation in the vulnerable and endemic Monkey Puzzle tree, detected using RAPDs. Heredity, 88, 243–249.CrossRefGoogle Scholar
  9. Bengoa, J. (Ed.). (2003). Historia de los antiguos mapuches del sur. Desde antes de la llegada de los españoles hasta las paces de Quilín. Santiago: Catalonia.Google Scholar
  10. Binford, M., Brenner, M., Whitmore, T. J., Higuera-Gundy, A., Deevey, E. S., & Leyden, B. W. (1987). Ecosystems, paleoecology, and human disturbance in subtropical and tropical America. Quaternary Science Reviews, 6, 115–128.Google Scholar
  11. Brenner, M., Rosenmeier, M. F., Hodell, D. A., Curtis, J. H. (2002). Paleolimnology of the Maya lowlands, long-term perspectives on interactions among climate, environment, and humans. Ancient Mesoamerica, 13, 141–157.CrossRefGoogle Scholar
  12. Broccoli, A. J., Dahl, K. A., Stouffer, R. J. (2006). Response of the ITCZ to Northern Hemisphere cooling. Geophysical Research Letters, 33, L01702. doi:10.1029/2005GL024546.CrossRefGoogle Scholar
  13. Bullock, D. (1958). La Agricultura de los Mapuches en tiempos Pre-Hispánicos. Boletín de la Sociedad de Biología de Concepción (apartado), 141–154.Google Scholar
  14. Caviedes, C. N. (1972). Geomorfología del Cuaternario del valle Aconcagua, Chile Central. Freiburger Geographische, 11, 153.Google Scholar
  15. Chamberlin, A., & Chadwick, R. (1972). Deposition of spores and other particles on vegetation and soil. Annals of Appied. Biology, 71, 141–158.CrossRefGoogle Scholar
  16. Clark, P. U., Dyke, A. S., Shakun, J.D., Carlson, A. E., Clark, J., Wohlfarth, B., Mitrovica, J. X., Hostetler, S. W., & McCabe, A. M. (2009). The last glacial maximum. Science, 325, 710–714.CrossRefGoogle Scholar
  17. Cranston, P. (2000). Parapsectrocladius: A new genus of Orthocladiinae Chironomidae (Diptera) from Patagonia, the southern Andes. Insect Systematic and Evolution, 31, 103–120.Google Scholar
  18. Di Castri, F., Hajek, E. R. (1976). Bioclimatología de Chile. Santiago: Vicerrectoría Académica, Universidad Católica de Chile.Google Scholar
  19. Dillehay, T. D. (2007). Monuments, resistance and empires in the andes: Araucanian ritual narratives and polity. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  20. Dillehay, T. D. & Saavedra, J. (2003). Interacción humana y ambiente: el desarrollo del kuel en Purén—Lumaco (Region de la Araucanía). Revista Austral de Ciencias Sociales, 7, 17–28.CrossRefGoogle Scholar
  21. Dillehay, T. D. & Saavedra, J. (2010). Arqueología Cultural de los Valles de Puréén, Lumaco y Liucura, Chile. Vanderbilt Publications in Anthropology, No. 52. Nashville: Vanderbilt University.Google Scholar
  22. Dillehay, T. D., Pino Q., M., Bonzani, R., Silvia, C., Wallner, J., & Le Quesne, C. (2007). Cultivated Wetlands and emerging complexity in south-central Chile and long distance effects of climate change. Antiquity, 81, 1–12.Google Scholar
  23. Donoso, C. (1983). Modificaciones del paisaje chileno a los largo de la historia. In Simposium Desarrollo y Perspectivas de las disciplinas forestales de la Universidad Austral de Chile (pp. 365–438). Facultad de Ciencias Forestales, Universidad Austral de Chile.Google Scholar
  24. Donoso, C. (1993). Bosques templados de Chile y Argentina. Variación, estructura y dinámica. Santiago: Editorial Universitaria.Google Scholar
  25. Endlicher, W., & Mäckel, R. (1985). Natural resources, land use and degradation in the coastal zone of Arauco and the Nahuelbuta Range, Central Chile. GeoJournal, 11(1), 43–60.CrossRefGoogle Scholar
  26. Epler, J. H. (2001). Identification Manual for the larval Chironomidae (Diptera) of North and South Carolina. A guide to the taxonomy of the midges of the southeastern United States, including Florida. Special Publication SJ2001-SP13. North Carolina Department of Environment and Natural Resources, Raleigh, NC, and St. Johns River Water Management District, Palatka, FL.Google Scholar
  27. Faegri, K., & Iversen, J. (1989). Textbook of pollen analysis. London: Wiley.Google Scholar
  28. Fletcher, M.-S., & Moreno, P. I. (2012). Have the Southern Westerlies changed in a zonally symmetric manner over the last 14,000 years? A hemisphere-wide take on a controversial problem. Quaternary International, 253, 32–46.CrossRefGoogle Scholar
  29. Garreaud, R. D., Vuille, M., Compagnucci, R., Marengo, J. (2008). Present-day South America climate. Palaeogeography, Palaeoclimatology, Palaeoecology. doi:10.1016/j.palaeo.2007.10.032.Google Scholar
  30. Gastó, J. (1979). Ecología, el hombre y la transformación de la naturaleza. Santiago: Editorial Universitaria.Google Scholar
  31. Gay, C. (1865). Agricultura, Tomo Segundo. In Historia física y política de Chile. Paris: Casa del Autor.Google Scholar
  32. Grimm, E. C. (1987). CONISS: A FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computer and Geosciences, 13, 13–35.CrossRefGoogle Scholar
  33. Grimm, E. C. (1991–1993). Tilia 2.0 Version b.4 and TiliaGraph. Springfield: Illinois State Museum.Google Scholar
  34. Grimm, E. C., (2004). TGView Version 2.0.2. Springfield: Illinois State Museum.Google Scholar
  35. Hauenstein, E., Muñoz-Pedreros, A., Peña, F., González, M. (2001). Bases para la conservación de los humedales de la costa de Toltén (IX Región). Informe Final Proyecto DIUCT N° 99–4-04. Dirección de Investigación, Universidad Católica de Temuco.Google Scholar
  36. Hechenleitner, P., Gardner, M., Escobar, B., Cabello, A. (2006). Prumnopitys andina (Poepp. ex Endl.) de Laub. Lleuque, Lleuqui, Uva de cordillera. Familia: Podocarpaceae. In C. Donoso (Ed.) Las especies arbóreas de los bosques templados de Chile y Argentina. Autoecología. Valdivia: Marisa Cuneo Ediciones.Google Scholar
  37. Heiri, O., Lotter, A., & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. Journal of Paleolimnology, 25, 101–110.CrossRefGoogle Scholar
  38. Heusser, C. J., Rabassa, J., Brandant, A., & Stuckenrath, R. (1988). Late-Holocene vegetation of the Andean Araucaria region, Province Neuquen, Argentina. Mountain Research and Development, 8, 53–63.CrossRefGoogle Scholar
  39. Heusser, C. J. (1990). Ice age vegetation and climate of subtropical Chile. Palaeogeography, Palaeoclimatology, Palaeoecology, 80, 107–127.CrossRefGoogle Scholar
  40. Heusser, L., Heusser, C. J., Pisias, N. (2006). Vegetation and climate dynamics of southern Chile during the past 50,000 years: Results of ODP Site 1233 pollen analysis. Quaternary Science Reviews, 25, 474–485.CrossRefGoogle Scholar
  41. Hodell, D. A., Curtis, J. H., Brenner, M. (1995). Possible role of climate in the collapse of classic Maya civilization. Nature, 375, 391–394.CrossRefGoogle Scholar
  42. Jenny, B., Valero-Garcés, B. L., Villa-Martínez, R., Urrutia, R., Geyh, M., Veit, H. (2002). Early to mid-Holocene aridity in central Chile and the southern westerlies: The Laguna Aculeo record (34 S). Quaternary Research, 58, 160–170.CrossRefGoogle Scholar
  43. Jenny, B., Wilhelm, D., & Valero-Garcés, B. L. 2003. The Southern Westerlies in Central Chile: Holocene precipitation estimates based on a water balance model for Laguna Aculeo (33° 50′ S). Climate Dynamics, 20, 269–280.Google Scholar
  44. Kaiser, J., Schefuß, E., Lamy, F., Mohtadi, M., Hebbeln, D. (2008). Glacial to Holocene changes in sea surface temperature and coastal vegetation in north central Chile: High versus low latitude forcing. Quaternary Science Reviews, 27, 2064–2075.CrossRefGoogle Scholar
  45. Kim, J. H., Schneider, R. R., Hebbeln, D., Muller, P., Wefer, G. (2002). Last deglacial sea-surface temperature evolution in the southeast Pacific compared to climate changes on the South American continent. Quaternary Science Reviews, 21, 2085–2097.CrossRefGoogle Scholar
  46. Kitzberger, T. (2002). ENSO as a forewarning tool of regional fire occurrence in northern Patagonia, Argentina. International Journal of Wildland Fire, 11, 3–39.CrossRefGoogle Scholar
  47. Lamy, F., Hebbeln, D., Wefer, G. (1999). High resolution marine record of climatic change in mid-latitude Chile during the last 28,000 years based on terrigenous sediment parameters. Quaternary Research, 51, 83–93.Google Scholar
  48. Lamy, F., Hebbeln, D., Rohl, U., Wefer, G. (2001). Holocene rainfall variability in southern Chile: A marine record of latitudinal shifts of the Southern Westerlies. Earth and Planetary Science Letters, 185, 369–382.Google Scholar
  49. Lane, C., Cummings, K., Clark, J. J. (2010). Maize pollen deposition in modern lake sediments: A case study from Northeastern Wisconsin. Review of Palaeobotany and Palynology, 159, 177–187.CrossRefGoogle Scholar
  50. Likens, G. E. (2001). Biogeochemistry, the watershed approach: Some uses and limitations. Marine and Freshwater Research, 52, 5–12.CrossRefGoogle Scholar
  51. Madanes, N., & MillonesA, A. (2004). Estudio del polen aéreo y su relación con la vegetación en un agroecosistema. Darwiniana, 42(1–4), 51–62.Google Scholar
  52. Maldonado, A., & Villagrán, C. (2002). Paleoenvironmental changes in the semiarid coast of Chile (~32°S) during the last 6200 cal years inferred from a swamp-forest pollen record. Quaternary Research, 58, 130–138.CrossRefGoogle Scholar
  53. Maldonado, A., & Villagrán, C. (2006). Climate variability over the last 9900 cal yr BP from a swamp forest pollen record along the semiarid coast of Chile. Quaternary Research, 66, 246–258.CrossRefGoogle Scholar
  54. Markgraf, V., McGlone, M., & Hope, G. (1995). Neogene paleoenvironmental and paleoclimatic change in southern temperate ecosystems: A southern perspective. Trends in Ecology and Evolution, 10, 143–147.CrossRefGoogle Scholar
  55. Markgraf, V., Webb, R. S., Anderson, K., & Anderson, L. (2002). Modern pollen/climate calibration for southern South America. Palaeogeography, Palaeoclimatology, Palaeoecology, 181, 375–397.CrossRefGoogle Scholar
  56. Massaferro, J., & Brooks, S. J. (2002). Response of chironomids to late quaternary environmental change in the Taitao Peninsula, southern Chile. Journal of Quaternary Science, 17(2), 101–111.CrossRefGoogle Scholar
  57. McCormac, G., Hogg A. G., Blackwell G. P., Buck E. C., Higham F. G. T., Reimer J. P. (2004). SHCal04 Southern Hemisphere calibration 0–11.0 cal kyr BP. Radiocarbon 46(3):1093–1102.Google Scholar
  58. Menocal, P. B. de (2001). Cultural responses to climate change during the late Holocene. Science, 292, 667–673.CrossRefGoogle Scholar
  59. Miller, A. (1976). The climate of Chile. In W. Schwerdtfeger (Ed.), Climates of Central and South America (pp. 113–145). Amsterdam: Elsevier.Google Scholar
  60. Montecinos, A., & Aceituno, P. (2003). Seasonality of the ENSO-related rainfall variability in central Chile and associated circulation anomalies. Journal of Climate, 16, 281–296.CrossRefGoogle Scholar
  61. Moreno, P. I. (2004). Millennial-scale climate variability in northwest Patagonia over the last 15000 yrs. Journal of Quaternary Science, 19, 35–47.CrossRefGoogle Scholar
  62. Moreno P. I., Villagran C., Marquet P. A., & Marshall L. G. (1994). Quaternary paleobiogeography of northern and central Chile. Revista Chilena De Historia Natural, 67, 487–502.Google Scholar
  63. Mösbach, E. W. (1930). Vida y costumbres de los indígenas araucanos en la segunda mitad del siglo XIX. Santiago de Chile: Imprenta de Universitaria.Google Scholar
  64. Moy, C. M., Seltzer, G. O., Rodbell, D. T., & Anderson, D. M. (2002). Variability of El Niño Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature, 420, 162–165.CrossRefGoogle Scholar
  65. Muñoz, R. I. (1984). Analysis de la productividad de semillas de Araucaria araucana (Mol.) C. Koch en el area de Lonquimay—IX Region. Tesis para optar al título de Ingeniero Forestal, Universidad de Chile.Google Scholar
  66. Oyarzún, C., Aracena, C., Rutherford, P., Godoy, R., & Deschrijver, A. (2007). Effects of land use conversion from native forests to exotic plantations on nitrogen and phosphorus retention in catchments of Southern Chile. Water Air Soil Pollution, 179, 341–350.CrossRefGoogle Scholar
  67. Paggi, A. C. (2001). Capítulo 8. Díptera: Chironomidae. In H. R. Hernández & E. Domínguez (Eds.), Guía para la determinación de los artrópodos bentónicos sudamericanos (pp. 167–193). Serie Investigaciones de la UNT., Argentina.Google Scholar
  68. Pinchicura, A. G. (2008). Calibración polen-cobertura de maíz (Zea mays): una herramienta para la reconstrucción de las prácticas y diversificación agrícola mapuche temprana. Bachelor in Biological Sciences thesis. Valdivia: Universidad Austral de ChileGoogle Scholar
  69. Planella, M. T., & Tagle, B. (2005). Alero Las Morrenas 1: Evidencias de cultígenos entre cazadores-recolectores de finales del período Arcaico en Chile Central. Revista Chungará, 37, 59–74.Google Scholar
  70. Premoli, A. C., Kitzberger, T., and Thomas T. Veblen (2000). Isozyme variation and recent biogeographical history of the long-lived conifer Fitzroya cupressoides. Journal of Biogeography, 27, 251–260.CrossRefGoogle Scholar
  71. Quiroz, D., & Sánchez, M. (2004). Poblamientos iniciales en la costa septentrional de la Araucanía (6.500–2.000 a.p.). Revista Chungará, 36, 289–302.Google Scholar
  72. Redman, C. L. (1999). Human impact on ancient environments. Tucson: University of Arizona Press.Google Scholar
  73. Reimer, P. J., Baillie M. G. L., Bard E., Bayliss A., Beck J. W., Bertrand C., Blackwell P. G., Buck C. E., Burr G., Cutler K. B., Damon P. E., Edwards R. L., Fairbanks R. G., Friedrich M., Guilderson T. P., Hughen K. A., Kromer B., McCormac F. G., Manning S., Bronk Ramsey C., Reimer R. W., Remmele S., Southon J. R., Stuiver M., Talamo S., Taylor F. W., van der Plicht J., & Weyhenmeyer C. E. (2004). IntCal04 Terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon, 46, 1029–1058.Google Scholar
  74. Renberg, I. (1990). A procedure for preparing large sets of diatom slides from sediment cores. Journal of Paleolimnology, 4, 87–90.CrossRefGoogle Scholar
  75. Ruthsatz, B., & Villagrán, C. (1991). Vegetation pattern and soil nutrients of a Magellanic Moorland on the Cordillera de Piuchué, Chiloé Island, Chile. Revista Chilena de Historia Natural, 64, 461–478.Google Scholar
  76. Rutllant, J., & Fuenzalida, H. (1991). Synoptic aspects of the central Chile rainfall variability associated with the Southern Oscillation. International Journal of Climatology, 11, 63–76.CrossRefGoogle Scholar
  77. Sanchez, M., Daniel Quiroz, D., & Massone, M. (2004). Domesticación de plantas y animales en la Araucanía: Datos, metodologías y problemas. Revista Chungara, 36, 365–372.Google Scholar
  78. Sanchez-Goñi, M. F., & Harrison, S. P. (2010). Millennial-scale climate variability and vegetation changes during the Last Glacial: Concepts and terminology. Quaternary Science Reviews, 29, 2823–2827.CrossRefGoogle Scholar
  79. Schmithüsen, J. (1956). Die raumliche Ordnung der chilenischen Vegetation. Bonner Geographische Abhandlungen, 17, 1–86.Google Scholar
  80. Sharpley, A., Smith S., Jones O., Berg W., & Coleman G. G. (1992). The transport of bioavailable phosphorus in agricultural runoff. Journal of Environmental Quality, 21, 30–35.CrossRefGoogle Scholar
  81. Stuiver, M., Reimer P., & Reimer R. (2005). CALIB Radiocarbon Calibration, Execute Version 5.0.2 html.Google Scholar
  82. Stuut, J.-B. W., & Lamy, F. (2004). Climate variability at the southern boundaries of the Namib (southwestern Africa) and Atacama (northern Chile) coastal deserts during the last 120,000 yr. Quaternary Research, 62, 301–309.CrossRefGoogle Scholar
  83. Toggweiler, J. R., Russell, J. L., Carson, S. R. (2006). Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography, 21, 1–15.CrossRefGoogle Scholar
  84. Torrejón, F., & Cisternas, M. (2002). Alteraciones del paisaje ecológico araucano por la asimilación mapuche de la agroganadería hispano-mediterránea (siglos XVI y XVII). Revista Chilena de Historia Natural, 75, 729–736.CrossRefGoogle Scholar
  85. Treu, R., & Emberlin, J. (2000). Pollen dispersal in the crops maize (Zea mays), oil seed rape (Brassica napus ssp. oleifera), potatoes (Solanum tuberosum), sugar beet (Beta vulgaris ssp. vulgaris) and wheat (Triticum aestivum). Evidence from publications. A report commissioned by the Soil Association. Worcester: National Pollen Research Unit, University College Worcester.Google Scholar
  86. Valero-Garcés, B. L., Jenny, B., Rondanelli, M., Delgado-Huertas, A., Burns, S. J., Veit, H., & Moreno, A. (2005). Palaeohydrology of Laguna de Tagua Tagua (34° 30’ S) and moisture fluctuations in Central Chile for the last 46,000 year. Journal of Quaternary Science, 20, 625–641.CrossRefGoogle Scholar
  87. Veblen, T. T. (1982). Regeneration patterns in Araucaria araucana forests in Chile. Journal of Biogeography, 9, 11–28.CrossRefGoogle Scholar
  88. Vega, R. (2008). Historia ambiental del valle de Purén-Lumaco (38° S) durante el Cuaternario: una aproximación sedimentológica. Biological Sciences Thesis. Universidad Austral de ChileGoogle Scholar
  89. Villagrán, C. (1985). Análisis palinológico de los cambios vegetacionales durante el Tardiglacial y Postglacial en Chiloé. Revista Chilena de Historia Natural, 58, 57–69.Google Scholar
  90. Villagrán, C. (1988). Expansion of Magellanic Moorlands during the Late Pleistocene: Palynological evidence from northern Isla Grande de Chiloé, Chile. Quaternary Research, 30, 304–314.CrossRefGoogle Scholar
  91. Villagrán, C. (2001). Un modelo de la historia de la vegetación de la Cordillera de la Costa de Chile central-sur: La hipótesis glacial de Darwin. Revista Chilena de Historia Natural, 74, 793–803.CrossRefGoogle Scholar
  92. Villagrán, C., & Varela, J. (1990). Palynological evidence for increased aridity on the central Chilean coast during the Holocene. Quaternary Research, 34, 198–207.CrossRefGoogle Scholar
  93. Villalba, R., Boninsegna, J. A., Lara, A., Veblen, T. T., Roig, E. A., Aravena, J. C., & Ripalta, A. (1996). Interdecadal climatic variations in millennial temperature reconstruc-tions from southern South America. In P. D. Jones, R. S. Bradley, & J. Jouzel (Eds.), Climatic variations and forcing mechanisms of the last 2,000 years: Vol. 41. NATO Advanced Science Series. (pp. 161–189). Berlin: SpringerCrossRefGoogle Scholar
  94. Villa-Martínez, R., Villagrán, C., & Jenny, B. (2003). The last 7500 cal yr B.P. of westerly rainfall in Central Chile inferred from a high-resolution pollen record from Laguna Aculeo (34° S). Quaternary Research, 60, 284–293.CrossRefGoogle Scholar
  95. Walker, I. R. (2007). The WWW field guide to fossil Midges. Accessed 8 Aug 2013.
  96. Weiss, H., & Bradley, R. S. (2001). What drives societal collapse? Science, 291, 609–610.CrossRefGoogle Scholar
  97. Whitlock, C., Moreno P. I., Bartlein P. (2007). Climatic controls of Holocene fire patterns in southern South America. Quaternary Research, 68, 28–36.CrossRefGoogle Scholar
  98. Wright, H. E. (1967). A square-rod piston sampler for lake sediments. Journal of Sedimentary Petrology, 37, 976.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ana M. Abarzúa
    • 1
  • Alia G. Pinchicura
    • 1
  • Leonora Jarpa
    • 1
  • Alejandra Martel-Cea
    • 1
  • Mieke Sterken
    • 1
  • Rodrigo Vega
    • 1
  • Mario Pino Q.
    • 1
  1. 1.Instituto de Ciencias GeologicasUniversidad Austral de ChileValdiviaChile

Personalised recommendations