An Iterative Fuzzy Goal Programming Method to Solve Fuzzified Multiobjective Fractional Programming Problems

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 248)

Abstract

This paper presents a fuzzy goal programming (FGP) approach for modeling and solving multiobjective fractional programming problems (MOFPPs) with fuzzy numbers parameter sets. In the proposed approach, first the notion of α-cut in fuzzy sets (FSs) is used to transform a problem into conventional MOFPP by using the tolerance membership functions in FSs. In model formulation, membership functions are converted into fuzzy goals for measuring the degree of satisfaction of decision maker (DM) with the solution for achievement of fuzzily described objectives of the problem. In the solution process, an iterative parametric method is addressed within the framework of minsum FGP model to reach the highest membership value (unity) to the extent possible in the decision making environment. The efficiency of the proposed approach is illustrated by a numerical example. The model solution is also compared with the solution obtained by using other approaches studied previously.

Keywords

Fractional programming Fuzzy Goal programming Iterative parametric method Membership functions Triangular fuzzy number 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Charnes, A., Cooper, W.W.: Programming with Linear Fractional Functions. Naval Res. Logis. Quarterly 9, 181–186 (1962)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bajalinov, E.B.: Linear-Fractional Programming Theory, Methods, Applications and Software. Kluwer Academic Publishers, United Kingdom (2003)CrossRefMATHGoogle Scholar
  3. 3.
    Craven, B.D.: Fractional Programming. Heldermann Verlag, Berlin (1988)MATHGoogle Scholar
  4. 4.
    Schaible, S.: Fractional Programming, Applications and Algorithms. Euro. J. Oper. Res. 7, 111–120 (1981)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Steuer, R.E.: Multiple Ccriteria Optimization: Theory, Computation and Application. John Wiley & Sons, New York (1986)Google Scholar
  6. 6.
    Ignizio, J.P.: Goal Programming and Extensions, D. C. Health, Lexington, Massachusetts (1976)Google Scholar
  7. 7.
    Kornbluth, J.S.H., Steuer, R.E.: Goal Programming with Linear Fractional Criteria. Euro. J. Oper. Res. 8, 58–65 (1981a)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Kornbluth, J.S.H., Steuer, R.E.: Multiple Objective Linear Fractional Programming. Manag. Sci. 27, 1024–1039 (1981b)CrossRefMATHGoogle Scholar
  9. 9.
    Bellman, R.E., Zadeh, L.A.: Decision-Making in a Fuzzy Environment. Manag. Sci. 17, B141 – B164 (1970)Google Scholar
  10. 10.
    Ludhandjula, M.K.: Fuzzy Approaches for Multiple Objectives Linear Fractional Optimization. Fuzzy Sets and Syts. 13, 11 – 23 (1984) Google Scholar
  11. 11.
    Rommelfanger, H., Hanuscheck, R., Wolf, J.: Linear Programming with Fuzzy Objectives. Fuzzy Sets and Systs. 29, 31–48 (1989)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Dutta, D., Rao, J.R., Tiwari, R.N.: Sensitivity Analysis in Fuzzy Linear Fractional Programming Problem. Fuzzy Sets and Systs. 48, 211–216 (1992)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Pal, B.B., Moitra, B.N., Maulik, U.: A Goal Programming Procedure for Fuzzy Multiobjective Linear Fractional Programming Problem. Fuzzy Sets and Systs. 139, 395–405 (2003)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Pal, B.B., Moitra, B.N., Sen, S.: A Linear Goal Programming Approach to Multiobjective Fractional Programming with Interval Parameter Sets. Int. J. Math. Oper. Res. 3, 697–714 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Dinkelbach, W.: On Nonlinear Fractional Programming. Manag. Sci. 13, 492–498 (1967)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications, New York, London (1980)Google Scholar
  17. 17.
    Yeh, C.T.: On improving trapezoidal and triangular approximations of fuzzy numbers. Internat. J. Approx. Reason. 48, 297–313 (2008)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Zimmermann, H.-J.: Fuzzy Sets, Decision Making and Expert Systems. Kluwer-Nijhoff Publishing, Dordrecht (1987)CrossRefGoogle Scholar
  19. 19.
    Kumar, M., Pal, B.B.: Dinkelbach Approach for solving Interval-Valued Multiobjective Fractional Programming Problems using Goal Programming. Int. J. Comp. Appl. 57, 12–17 (2012)Google Scholar
  20. 20.
    Pal, B.B., Chakraborti, D.: Using Genetic Algorithm for solving Quadratic Bilevel Programming Problems via Fuzzy Goal Programming. Int. J. Appl. Manag. Sci. 5, 172–195 (2013)CrossRefGoogle Scholar
  21. 21.
    Pal, B.B., Kumar, M., Sen, S.: Priority based Fuzzy Goal Programming Approach for Fractional Multilevel Programming Problems. Int. Rev. Fuzzy Math. 6, 1–14 (2011)Google Scholar
  22. 22.
    Castillo, O., Melin, P.: Type-2 Fuzzy Logic Theory and Applications. STUDFUZZ, vol. 223. Springer, Heidelberg (2008)MATHGoogle Scholar
  23. 23.
    Mendel, J.M., Bob, R.I.: Type-2 Fuzzy Sets Made Simple. IEEE Tran. Fuzzy Systs. 10, 117–127 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of MathematicsAlipurduar CollegeAlipurduar CourtIndia
  2. 2.Department of MathematicsB.K.C. CollegeKolkataIndia
  3. 3.Department of MathematicsUniversity of KalyaniKalyaniIndia

Personalised recommendations