A Trilevel Programming Approach to Solve Reactive Power Dispatch Problem Using Genetic Algorithm Based Fuzzy Goal Programming

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 248)

Abstract

This article demonstrates how trilevel programming (TLP) in a hierarchical decision structure can be efficiently used for modeling and solving reactive power dispatch (RPD) problems of electrical power system by using genetic algorithms (GAs) in the framework of fuzzy goal programming (FGP) in uncertain environment. In the proposed approach, various objectives associated with a RPD problem are considered at three hierarchical levels in a planning horizon. In the solution process, a GA scheme is employed to obtain the individual values of objectives and thereby to evaluate the developed FGP model to reach a solution for optimal RPD decision. The proposed approach is tested on the standard IEEE 6-Generator 30-Bus System.

Keywords

Fuzzy goal programming Genetic algorithm L-index Reactive power dispatch Trilevel programming Voltage profile 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Peschon, J., Piercy, D.S., Tinney, W.F., Tveit, O.J., Cuenod, M.: Optimum Control of Reactive Power Flow. IEEE Transactions on Power Apparatus and Systems PAS-87(1), 40–48 (1968)CrossRefGoogle Scholar
  2. 2.
    Fernandes, R.A., Happ, H.H., Wirgau, K.A.: Optimal Reactive Power Flow for Improved System Operations. International Journal of Electrical Power & Energy Systems 2(3), 133–139 (1980)CrossRefGoogle Scholar
  3. 3.
    Mamandur, K.R.C., Chenoweth, R.D.: Optimal Control of Reactive Power Flow for Improvements in Voltage Profiles and for Real Power Loss Minimization. IEEE Transactions on Power Apparatus and Systems PAS-100(7), 3185–3194 (1981)CrossRefGoogle Scholar
  4. 4.
    Lee, K.Y., Park, Y.M., Ortiz, J.L.: An United Approach to Optimal Real and Reactive Power Dispatch. IEEE Transactions on Power Apparatus and Systems PAS-104(5), 1147–1153 (1985)CrossRefGoogle Scholar
  5. 5.
    Deeb, N., Shahidehpur, S.M.: Linear Reactive Power Optimization in a Large Power Network using the Decomposition Approach. IEEE Transactions on Power Systems 5(2), 428–435 (1990)CrossRefGoogle Scholar
  6. 6.
    Granville, S.: Optimal Reactive Power Dispatch through Interior Point Methods. IEEE Transactions on Power Systems 9(1), 98–105 (1994)CrossRefGoogle Scholar
  7. 7.
    Yan, W., Liu, F., Chung, C., Wong, K.: A Hybrid Genetic Algorithm-interior Point Method for Optimal Reactive Power Flow. IEEE Transactions on Power Systems 21(3), 1163–1169 (2006)CrossRefGoogle Scholar
  8. 8.
    Mahadevan, K., Kannan, P.S.: Comprehensive Learning Particle Swarm Optimization for Reactive Power Dispatch. International Journal of Applied Soft Computing 10(2), 641–652 (2010)CrossRefGoogle Scholar
  9. 9.
    El Ela, A.A.A., Abido, M.A., Spea, S.R.: Differential Evolution Algorithm for Optimal Reactive Power Dispatch. Electric Power Systems Research 81, 458–468 (2011)CrossRefGoogle Scholar
  10. 10.
    Kall, P., Wallace, S.W.: Stochastic programming. John Wiley & Sons, Chichester (1994)MATHGoogle Scholar
  11. 11.
    Zimmermann, H.-J.: Fuzzy Programming and Linear Programming with Several Objective Functions. Fuzzy Sets and Systems 1(1), 45–55 (1978)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Zadeh, L.A.: Fuzzy Sets. Information and Control 8(3), 338–353 (1965)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Kargarian, A., Raoofat, M., Mohammadi, M.: Probabilistic Reactive Power Procurement in Hybrid Electricity Markets with Uncertain Loads. Electric Power Systems Research 82(1), 68–80 (2012)CrossRefGoogle Scholar
  14. 14.
    Tomsovic, K.: A Fuzzy Linear Programming Approach to the Reactive Power/voltage Control Problem. IEEE Transactions on Power Systems 7(1), 287–293 (1992)CrossRefGoogle Scholar
  15. 15.
    Abdul-Rahman, K.H., Shahidehpour, S.M.: A Fuzzy-based Optimal Reactive Power Control. IEEE Transactions on Power Systems 8(2), 662–670 (1993)CrossRefGoogle Scholar
  16. 16.
    Zhang, G., Lu, J., Montero, J., Zeng, Y.: Model, Solution Concept, and Kth-best Algorithm for Linear Trilevel Programming. Information Sciences 180(4), 481–492 (2010)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Sakawa, M., Nishizaki, I.: Cooperative and Non-cooperative Multi-Level Programming. Springer, New York (2009)Google Scholar
  18. 18.
    Almeida, K.C., Senna, F.S.: Optimal Active-reactive Power Dispatch under Competition via Bilevel Programming. IEEE Transactions on Power Systems 26(4), 2345–2354 (2011)CrossRefGoogle Scholar
  19. 19.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Longman Publishing Co. Inc., Boston (1989)MATHGoogle Scholar
  20. 20.
    Pal, B.B., Moitra, B.N., Maulik, U.: A Goal Programming Procedure for Fuzzy Multiobjec-tive Linear Fractional Programming Problem. Fuzzy Sets and Systems 139(2), 395–405 (2003)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Electrical EngineeringJIS College of EngineeringKalyani, NadiaIndia
  2. 2.Department of MathematicsUniversity of KalyaniNadiaIndia

Personalised recommendations