An Axiomatic Fuzzy Set Theory Based Feature Selection Methodology for Handwritten Numeral Recognition

  • Abhinaba Roy
  • Nibaran Das
  • Ram Sarkar
  • Subhadip Basu
  • Mahantapas Kundu
  • Mita Nasipuri
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 248)


A new feature selection methodology on the basis of features’ combined class separability power, using the framework of Axiomatic Fuzzy Set (AFS) theory has been proposed here. The AFS theory provides the rules for logic operations needed to interpret the combinations of features from the fuzzy feature set. Based on these combinational rules, class separability power of the combined features is determined and subsequently the most powerful subset of the feature set is selected. The performance of this methodology is evaluated upon for recognition of handwritten numerals of five popular Indic scripts viz. Bangla, Devanagari, Roman, Telugu and Arabic with SVM based classifier using gradient based directional feature set and quad-tree based longest-run feature set separately and compared with six widely used feature selection techniques. From the experimental results, it has been found that the methodology provides higher recognition accuracies with lesser or equal numbers of features selected for each dataset.


Feature selection Axiomatic Fuzzy Set Theory Handwritten character recognition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tsamardinos, I., Aliferis, C.F.: Towards principled feature selection: Relevancy, filters and wrappers. In: Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics. Morgan Kaufmann Publishers, Key West (2003)Google Scholar
  2. 2.
    Hall, M.A., Smith, L.A.: Feature selection for machine learning: comparing a correlation-based filter approach to the wrapper. In: Proceedings of the Twelfth International Florida Artificial Intelligence Research Society Conference, p. 239. AAAI Press (1999)Google Scholar
  3. 3.
    Roy, A., Das, N., Basu, S., Sarkar, R., Kundu, M., Nasipuri, M.: Region selection in handwritten character recognition using Artificial Bee Colony Optimization. In: EAIT, pp. 189–192 (2012)Google Scholar
  4. 4.
    Mitra, P., Murthy, C., Pal, S.K.: Unsupervised feature selection using feature similarity. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 301–312 (2002)CrossRefGoogle Scholar
  5. 5.
    Hall, M.A.: Correlation-based feature selection for machine learning. The University of Waikato (1999)Google Scholar
  6. 6.
    Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 1226–1238 (2005)CrossRefGoogle Scholar
  7. 7.
    Lee, H.-M., Chen, C.-M., Chen, J.-M., Jou, Y.-L.: An efficient fuzzy classifier with feature selection based on fuzzy entropy. Trans. Sys. Man Cyber. Part B 31, 426–432 (2001)CrossRefGoogle Scholar
  8. 8.
    Luukka, P.: Feature selection using fuzzy entropy measures with similarity classifier. Expert Systems with Applications 38, 4600–4607 (2011)CrossRefGoogle Scholar
  9. 9.
    Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. The Journal of Machine Learning Research 3, 1157–1182 (2003)MATHGoogle Scholar
  10. 10.
    Rezaee, M.R., Goedhart, B., Lelieveldt, B., Reiber, J.: Fuzzy feature selection. Pattern Recognition 32, 2011–2019 (1999)CrossRefGoogle Scholar
  11. 11.
    Li, Y., Wu, Z.F.: Fuzzy feature selection based on min–max learning rule and extension matrix. Pattern Recognition 41, 217–226 (2008)CrossRefMATHGoogle Scholar
  12. 12.
    Liu, X., Pedrycz, W.: Axiomatic Fuzzy Set Theory and Its Applications. STUDFUZZ, vol. 244. Springer, Heidelberg (2009)CrossRefMATHGoogle Scholar
  13. 13.
    Xiaodong, L.: The fuzzy theory based on AFS algebras and AFS structure. Journal of Mathematical Analysis and Applications 217, 459–478 (1998)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Wang, X., Liu, X., Pedrycz, W., Zhu, X., Hu, G.: Mining axiomatic fuzzy set association rules for classification problems. European Journal of Operational Research 218, 202–210 (2012)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Ren, Y., Liu, X., Cao, J.: A parsimony fuzzy rule-based classifier using axiomatic fuzzy set theory and support vector machines. Information Sciences 181, 5180–5193 (2011)CrossRefMATHGoogle Scholar
  16. 16.
    Tao, L., Chen, Y., Liu, X., Wang, X.: An integrated multiple criteria decision making model applying axiomatic fuzzy set theory. Applied Mathematical Modelling (2011)Google Scholar
  17. 17.
  18. 18.
    Roy, A., Mazumder, N., Das, N., Sarkar, R., Basu, S., Nasipuri, M.: A new quad tree based feature set for recognition of handwritten Bangla numerals. In: 2012 IEEE International Conference on Engineering Education: Innovative Practices and Future Trends (AICERA), pp. 1–6 (2012)Google Scholar
  19. 19.
    Das, N., Reddy, J.M., Sarkar, R., Basu, S., Kundu, M., Nasipuri, M., Basu, D.K.: A statistical-topological feature combination for recognition of handwritten numerals. Appl. Soft Comput. 12, 2486–2495 (2012)CrossRefGoogle Scholar
  20. 20.
    Roy, A., Das, N., Sarkar, R., Basu, S., Kundu, M., Nasipuri, M.: A Comparative Study of Feature Ranking Methods in Recognition of Handwritten Numerals. In: IEEE International Conference on Signal Processing, Computing and Control (ISPCC), September 26-28 (2013)Google Scholar
  21. 21.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter 11, 10–18 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Abhinaba Roy
    • 1
  • Nibaran Das
    • 1
  • Ram Sarkar
    • 1
  • Subhadip Basu
    • 1
  • Mahantapas Kundu
    • 1
  • Mita Nasipuri
    • 1
  1. 1.Computer Science and Engineering DepartmentJadavpur UniversityKolkataIndia

Personalised recommendations