Soft Computing Based Partial-Retuning of Decentralised PI Controller of Nonlinear Multivariable Process

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 248)

Abstract

Recent developments in nature-inspired algorithms motivate the control engineers to work towards its application in industrial processes. Almost all the industrial processes are difficult to control since it involves many variables, strong interactions and inherent nonlinearities. In the present work the authors propose cuckoo search, a recent metahuristic algorithm to fine tune the parameters of decentralised PI controller of coal gasifier which is a highly nonlinear multivariable process having strong interactions among the control loops. With the existing controller parameters the response does not able to meet the performance requirements at 0% load for sinusoidal pressure disturbance test. The PI controller for pressure loop is retuned using Cuckoo search algorithm and the best optimal values for its parameters are obtained. Performance of the system with tuned optimal controller settings is evaluated for pressure disturbance test, load change test and coal quality test.

Keywords

Coal gasifier Cuckoo search algorithm metahuristic algorithm multivariable process nonlinear systems PID Controller tuning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dixon, R., Pike, A.W.: Alstom Benchmark Challenge II on Gasifier Control. IEE Proceedings - Control Theory and Applications 153(3), 254–261 (2006)CrossRefGoogle Scholar
  2. 2.
    Chin, C.S., Munro, N.: Control of the ALSTOM gasifier benchmark problem using H2 methodology. Journal of Process Control 13(8), 759–768 (2003)CrossRefGoogle Scholar
  3. 3.
    Al Seyab, R.K., Cao, Y., Yang, S.H.: Predictive control for the ALSTOM gasifier problem. IEE Proceedings - Control Theory and Application 153(3), 293–301 (2006)CrossRefGoogle Scholar
  4. 4.
    Al Seyab, R.K., Cao, Y.: Nonlinear model predictive control for the ALSTOM gasifier. Journal of Process Control 16(8), 795–808 (2006)CrossRefGoogle Scholar
  5. 5.
    Nobakhti, A., Wang, H.: A simple self-adaptive Differential Evolution algorithm with application on the ALSTOM gasifier. Applied Soft Computing 8(1), 350–370 (2008)CrossRefGoogle Scholar
  6. 6.
    Agustriyanto, R., Zhang, J.: Control structure selection for the ALSTOM gasifier benchmark process using GRDG analysis. International Journal of Modelling, Identification and Control 6(2), 126–135 (2009)CrossRefGoogle Scholar
  7. 7.
    Tan, W., Lou, G., Liang, L.: Partially decentralized control for ALSTOM gasifier. ISA Transactions 50(3), 397–408 (2011)CrossRefGoogle Scholar
  8. 8.
    Sivakumar, L., Anitha Mary, X.: A Reduced Order Transfer Function Models for Alstom Gasifier using Genetic Algorithm. International Journal of Computer Applications 46(5), 31–38 (2012)CrossRefGoogle Scholar
  9. 9.
    Kotteeswaran, R., Sivakumar, L.: Lower Order Transfer Function Identification of Nonlinear MIMO System-Alstom Gasifier. International Journal of Engineering Research and Applications 2(4), 1220–1226 (2012)Google Scholar
  10. 10.
    Huang, C., Li, D., Xue, Y.: Active disturbance rejection control for the ALSTOM gasifier benchmark problem. Control Engineering Practice 21(4), 556–564 (2013)CrossRefGoogle Scholar
  11. 11.
    Griffin, I.A., Schroder, P., Chipperfield, A.J., Fleming, P.J.: Multi-objective optimization approach to the ALSTOM gasifier problem. Proceedings of IMechE Part I: Journal of Systems and Control Engineering 214(6), 453–469 (2000)Google Scholar
  12. 12.
    Xue, Y., Li, D., Gao, F.: ‘Multi-objective optimization and selection for the PI control of ALSTOM gasifier problem. Control Engineering Practice 18(1), 67–76 (2010)CrossRefGoogle Scholar
  13. 13.
    Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2008)Google Scholar
  14. 14.
    Yang, X.S.: Biology-derived algorithms in engineering optimization (Chapter 32). In: Olarius, Zomaya (eds.) Handbook of Bioinspired Algorithms and Applications. Chapman & Hall / CRC (2005)Google Scholar
  15. 15.
    Yang, X.-S., Deb, S.: Engineering optimization by Cuckoo Search. Int. J. Math. Model Numerical Optimisation 1(4), 330–343 (2010)CrossRefMATHGoogle Scholar
  16. 16.
    Valian, E., Mohanna, S., Tavakoli, S.: Improved Cuckoo Search Algorithm forGlobal Optimization. International Journal of Communications and Information Technology 1(1), 31–44 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Sri Krishna College of Engineering and TechnologyCoimbatoreIndia
  2. 2.Department of Instrumentation and Control EngineeringSt. Joseph’s College of EngineeringChennaiIndia

Personalised recommendations