Hybrid Non-dominated Sorting Simulated Annealing Algorithm for Flexible Job Shop Scheduling Problems

  • N. Shivasankaran
  • P. Senthilkumar
  • K. Venkatesh Raja
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 248)

Abstract

A new hybrid Non-dominated Sorting simulated annealing algorithm has been proposed to solve Multiobjective flexible job-shop scheduling problems (MOFJSPs). The multi objectives considered in this study are makespan, total workload of machines, workload of critical machines and total cost simultaneously. In this study, the critical or incapable machines are eliminated by non-dominated sorting of all operations and the initial solution is arrived using simulated annealing. A main feature of this proposed algorithm is its computational efficiency and simplicity in hybridization. The performance of the proposed algorithm is tested with flexible benchmark instances. The experimental results prove its performance by providing non-dominated solutions for both small and relatively larger cases in minimum computational time.

Keywords

Multi objective flexible job-shop scheduling Non-dominated Sorting Simulated annealing algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and job shop scheduling. Math. Oper. Res. 1(2), 117–129 (1976)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Hurink, J., Jurisch, B., Thole, M.: Tabu search for the job-shop scheduling problem with multi-purpose machines. OR-Spektrum 15(4), 205–215 (1994)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Mastrolilli, M., Gambardella, L.M.: Effective neighborhood functions for the flexible job shop problem. J. Sched. 3(1), 3–20 (1996)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Kacem, I., Hammadi, S., Borne, P.: Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems. IEEE Transactions on Systems, Man, and Cybern, Part C 32(1), 1–13 (2002a), doi:10.1109/TSMCC.2002.1009117CrossRefGoogle Scholar
  5. 5.
    Kacem, I., Hammadi, S., Borne, P.: Pareto-optimality approach for flexible job-shop scheduling problems: Hybridization of evolutionary algorithms and fuzzy logic. Math. Comput. Simul. 60(3), 245–276 (2002b)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Tay, J.C., Wibowo, D.: An effective chromosome representation for evolving flexible job shop schedules. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 210–221. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Ho, N.B., Tay, J.C.: GENACE: An efficient cultural algorithm for solving the flexible job-shop problem. In: IEEE Congress on Evolutionary Computation CEC 2004, vol. 2, pp. 1759–1766. IEEE (2004), doi:10.1109/CEC.2004.1331108Google Scholar
  8. 8.
    Ho, N.B., Tay, J.C.: Evolving dispatching rules for solving the flexible job-shop problem. In: IEEE Congress on Evolutionary Computation, vol. 3, pp. 2848–2855. IEEE (2005), doi:10.1109/CEC.2005.1555052Google Scholar
  9. 9.
    Zhang, H., Gen, M.: Multistage-based genetic algorithm for flexible job-shop scheduling problem. J. Complex. Int. 11, 223–232 (2005)Google Scholar
  10. 10.
    Xia, W., Wu, Z.: An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems. Comput. Ind. Engg. 48(2), 409–425 (2005)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gao, J., Gen, M., Sun, L., Zhao, X.: A hybrid of genetic algorithm and bottleneck shifting for multiobjective flexible job shop scheduling problems. Comput. Ind. Engg. 53(1), 149–162 (2007)CrossRefMATHGoogle Scholar
  12. 12.
    Gao, J., Sun, L., Gen, M.: A hybrid genetic and variable neighborhood descent algorithm for flexible job shop scheduling problems. Comput. Oper. Res. 35(9), 2892–2907 (2008)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Liouane, N., Saad, I., Hammadi, S., Borne, P.: Ant systems & Local Search Optimization for flexible job shop scheduling production. Int. J. Comput. Commun. Control 2(2), 174–184 (2007)Google Scholar
  14. 14.
    Saidi-Mehrabad, M., Fattahi, P.: Flexible job shop scheduling with tabu search algorithms. Int. J. Adv. Manuf. Technol. 32(5-6), 563–570 (2007)CrossRefGoogle Scholar
  15. 15.
    Zhang, G., Shao, X., Li, P., Gao, L.: An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem. Comput. Ind. Engg. 56(4), 1309–1318 (2009)CrossRefGoogle Scholar
  16. 16.
    Xing, L.N., Chen, Y.W., Yang, K.W.: An efficient search method for multi-objective flexible job shop scheduling problems. J. Intell. Manuf. 20(3), 283–293 (2009)CrossRefGoogle Scholar
  17. 17.
    Li, J.Q., Pan, Q.K., Liang, Y.C.: An effective hybrid tabu search algorithm for multi-objective flexible job-shop scheduling problems. Comput. Ind. Engg. 59(4), 647–662 (2010)CrossRefGoogle Scholar
  18. 18.
    Wang, X., Gao, L., Zhang, C., Shao, X.: A multi-objective genetic algorithm based on immune and entropy principle for flexible job-shop scheduling problem. Int. J. Adv. Manuf. Technol. 51(5-8), 757–767 (2010)CrossRefGoogle Scholar
  19. 19.
    Bagheri, A., Zandieh, M., Mahdavi, I., Yazdani, M.: An artificial immune algorithm for the flexible job-shop scheduling problem. Future Gener. Comput. Syst. 26(4), 533–541 (2010)CrossRefGoogle Scholar
  20. 20.
    Moslehi, G., Mahnam, M.: A Pareto approach to multi-objective flexible job-shop scheduling problem using particle swarm optimization and local search. Int. J. Prod. Econ. 129, 14–22 (2011)CrossRefGoogle Scholar
  21. 21.
    Shivasankaran, N., Senthil Kumar, P., Nallakumarasamy, G., Venkatesh Raja, K.: A Hybrid Bubble Sorting Simulated Annealing Algorithm for Job Shop Scheduling. In: Third International Conference on Computing Communication & Networking Technologies (ICCCNT 2012), pp. 1–5. IEEE (2012), doi:10.1109/ICCCNT.2012.6395981Google Scholar
  22. 22.
    Shivasankaran, N., Senthil Kumar, P., Nallakumarasamy, G., Venkatesh Raja, K.: Repair Shop Job Scheduling with Parallel Operators and Multiple Constraints using Simulated Annealing. Int. J. Comput. Intell. Syst. 6(2), 223–233 (2013)CrossRefGoogle Scholar
  23. 23.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGAII. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar
  24. 24.
    Frutos, M., Olivera, A.C., Tohmé, F.: A memetic algorithm based on a NSGAII scheme for the flexible job-shop scheduling problem. Ann. Oper. Res. 181(1), 745–765 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • N. Shivasankaran
    • 1
  • P. Senthilkumar
    • 1
  • K. Venkatesh Raja
    • 2
  1. 1.Department of Mechanical EngineeringK.S.R. College of EngineeringTiruchengodeIndia
  2. 2.Department of Automobile EngineeringK.S.R. College of EngineeringTiruchengodeIndia

Personalised recommendations