Advertisement

Effect of Indexing on High-Dimensional Databases Using Query Workloads

  • S. Rajesh
  • Karthik Jilla
  • K. Rajiv
  • T. V. K. P. Prasad
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 249)

Abstract

High-dimensional indexes do not work because of the often-cited “curse of dimensionality.” However, users are usually interested in querying data over a relatively small subset of the entire attribute set at a time. A potential solution is to use lower dimensional indexes that accurately represent the user access patterns. To address these issues, in this paper we propose a parameterizable technique to recommend indexes based on index types.

Keywords

Object Oriented Database Model High dimensional indexes indexing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goldstein, J., Platt, J.C., Burges, C.J.C.: Indexing High Dimensional Rectangles for Fast Multimedia Identification. Technical Report MSR-TR-2003-38 (2003)Google Scholar
  2. 2.
    Bohm, C., Berchtold, S., Keim, D.A.: Searching in High-Dimensional Spaces—Index Structures for Improving the Performance of Multimedia Databases. ACM Computing Surveys 33(3), 322–373 (2001)CrossRefGoogle Scholar
  3. 3.
    Hand, D., Mannila, H., Smyth, P.: Principles of Data Mining. The MIT Press (2001)Google Scholar
  4. 4.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers (2000)Google Scholar
  5. 5.
    Lawder, J.K., King, P.J.H.: Using Space-filling Curves for Multi-dimensional Indexing (June 2000)Google Scholar
  6. 6.
    Heesch, D., Rueger, S.: NNk networks for content-based image retrieval. In: Proceedings of the 26th European Conference on Information Retrieval (ECIR), Sunderland, UK (April 2004)Google Scholar
  7. 7.
    Bingham, E., Mannila, H.: Random projection in dimensionality reduction: Applications for image and text data. In: KDD 2001, San Francisco, CA (2001)Google Scholar
  8. 8.
    Chakrabarti, K., Mehrotra, S.: Local Dimensionality Reduction: A New Approach to Indexing High Dimensional Spaces. In: VLDB Conference Proceedings (2000)Google Scholar
  9. 9.
    Yu, C., Ooi, B.C., Tan, K.L., Jagadish, H.: Indexing the distance: an efficient method to knn processing. In: Proc. 27th International Conference on Very Large Data Bases, pp. 421–430 (2001)Google Scholar
  10. 10.
    Valentin, G., Zuliani, M., Zilio, D., Lohman, G., Skelley, A.: DB2 Advisor: An Optimizer Smart Enough to Recommend Its Own Indexes. In: Proc. 16th Int’l Conf. Data Eng., ICDE 2000 (2000)Google Scholar
  11. 11.
    Han, J., Pei, J., Yin, Y.: Mining Frequent Patterns without Candidate Generation. In: Chen, W., Naughton, J., Bernstein, P.A. (eds.) Proc. ACM SIGMOD Int’l Conf. Management of Data (SIGMOD 2000), pp. 1–12 (2000)Google Scholar
  12. 12.
    Berchtold, S., Keim, D., Kriegel, H.: The X-Tree: An Index Structure for High-Dimensional Data. In: Proc. 22nd Int’l Conf. Very Large Data Bases (VLDB 1996), pp. 28–39 (1996)Google Scholar
  13. 13.
    Chung, C.-W., Cha, G.-H.: The GC-Tree: A High-Dimensional Index Structure for Similarity Search in Image Databases. IEEE Trans. Multimedia 4(2), 235–247 (2002)CrossRefGoogle Scholar
  14. 14.
    Blum, Langley, P.: Selection of Relevant Features and Examples in Machine Learning. Artificial Intelligence (1997)Google Scholar
  15. 15.
    Chaudhuri, S., Narasayya, V.R.: An Efficient Cost-Driven Index Selection Tool for Microsoft SQL Server. VLDB J., 146–155 (1997)Google Scholar
  16. 16.
    Kai-Uwe, S., Schallehn, E., Geist, I.: Autonomous Query- Driven Index Tuning. In: Fourth Int’l Database Eng. And Applications Symp., IDEAS 2004 (2004)Google Scholar
  17. 17.
    Costa, R.L.D.C., Lifschitz, S.: Index Self-Tuning with Agent- Based Databases. In: Proc. 28th Latin-Am. Conf. Informatics, CLEI 2002 (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • S. Rajesh
    • 1
  • Karthik Jilla
    • 1
  • K. Rajiv
    • 1
  • T. V. K. P. Prasad
    • 2
  1. 1.Nalla Narasimha Reddy Educational Society’s Group of InstitutionsHyderabadIndia
  2. 2.Dept. of CSESRKR Engineering CollegeBhimavaramIndia

Personalised recommendations