Semantic Framework to Text Clustering with Neighbors

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 249)

Abstract

Conventional document clustering techniques use bag-of-words to represent documents, an often unsatisfactory representation, as it ignores the relationships between words that do not co-occur literally. Including semantic knowledge in text representation we can establish the relations between words and thus result in better clusters. Here we apply neighbors and link concept with semantic framework to cluster documents. The neighbors and link provides the global information to compute the closeness of two documents than simple pair wise similarity. We have given a framework to represent text documents with semantic knowledge and proposed Shared Neighbor Based Semantic Text Clustering algorithm. Our experiments on Reuters, Classic and real-time datasets shows significant improvement in forming coherent clusters.

Keywords

Similarity Measures Coherent Clustering Neighbor Clustering WordNet 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gowda, K.C., Krishna, G.: Agglomerative clustering using the concept of mutual nearest neighborhood. Pattern Recognition 10(2), 105–112 (1978)CrossRefMATHGoogle Scholar
  2. 2.
    Huang, A.: Similarity Measures for Text Document Clustering. Published in the Proceedings of New Zealand Computer Science Research Student Conference (2008)Google Scholar
  3. 3.
    Strehl, A., Ghosh, J., Mooney, R.: Impact of similarity measures on web-page clustering. In: AAAI 2000: Workshop on Artificial Intelligence for Web Search (July 2000)Google Scholar
  4. 4.
    Guha, S., Rastogi, R., Shim, K.: ROCK: a robust clustering algorithm for categorical attributes. Information Systems 25(5), 345–366 (2000)CrossRefGoogle Scholar
  5. 5.
    Luo, C., Li, Y., Chung, S.M.: Text Document Clustering based on neighbors. Data and Knowledge Engineering 68, 1271–1288 (2009)CrossRefGoogle Scholar
  6. 6.
    Steinbach, M., Karypis, G., Kumar, V.: A comparison of document clustering techniques. In: KDD Workshop on Text Mining (2000)Google Scholar
  7. 7.
    Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press (1998)Google Scholar
  8. 8.
    Varelas, G., Voutsakis, E., Raftopoulou, P., Petrakis, E., Milios, E.: Semantic similarity methods in WordNet and their application to information retrieval on the web. In: Proceedings of the 7th Annual ACM International Workshop on Web Information and Data Management, pp. 10–16 (2005)Google Scholar
  9. 9.
    Jarvis, R.A., Patrick, E.A.: Clustering using a similarity measure based on shared near neighbors. IEEE Transactions on Computers C-22(11), 1025–1034 (1973)Google Scholar
  10. 10.
    Chen, C.-L., Tseng, F.S.C., Liang, T.: An integration of fuzzy association rules and wordNet for document clustering. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS, vol. 5476, pp. 147–159. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Bouras, C., Tsogkas, V.: W-kmeans clustering news articles using WordNet. In: Setchi, R., Jordanov, I., Howlett, R.J., Jain, L.C. (eds.) KES 2010, Part III. LNCS (LNAI), vol. 6278, pp. 379–388. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Danish, M., Shirgahi, H.: Text document clustering using semantic neighbors. Journal of Software Engineering (2011)Google Scholar
  13. 13.
    Li, Y., Chung, S.M., Holt, J.D.: Text document clustering based on frequent word meaning sequences. Journal of Data and Knowledge Engineering 64, 381–404 (2008)CrossRefGoogle Scholar
  14. 14.
    Hotho, A., Staab, S., Stumme, G.: Ontologies improve text document clustering. In: Proceedings of the 3rd IEEE International Conference on Data Mining, pp. 541–544 (2003)Google Scholar
  15. 15.
    Sedding, J., Kazakov, D.: WordNet-based text document clustering. In: Proc. of COLING-Workshop on Robust Methods in Analysis of Natural Language Data (2004)Google Scholar
  16. 16.
    Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs (1988)MATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of CSEJNTUH College of EngineeringHyderabadIndia

Personalised recommendations