A Modified Speckle Suppression Algorithm for Breast Ultrasound Images Using Directional Filters

  • Vikrant Bhateja
  • Atul Srivastava
  • Gopal Singh
  • Jay Singh
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 249)

Abstract

Speckle noise in ultrasound images (US) is a serious constraint leading to false therapeutic decision making in computer aided diagnosis. This highlights the utility of speckle suppression along with due preservation of edges as well as textural features while processing breast ultrasound images (for computer aided diagnosis of breast cancer). This paper presents a modified speckle suppression algorithm employing directional average filters for breast ultrasound images in homogeneity domain. The threshold mechanism during the process is adjusted using the entropies of foreground and background regions to ensure appropriate extraction of textural information. Simulation results demonstrate significantly improved performance in comparison to recently proposed methods in terms of speckle removal as well as edge preservation.

Keywords

Speckle removal Law’s textural energy measure Maximum entropy Canny Edge preservation factor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bhateja, V., Devi, S.: An Improved Non-Linear Transformation Function for Enhancement of Mammographic Breast Masses. In: Proc. of (IEEE) 3rd International Conference on Electronics & Computer Technology (ICECT 2011), Kanyakumari (India), vol. 5, pp. 341–346 (2011)Google Scholar
  2. 2.
    Chen, L., Lu, G., Zhang, D.: Effects of Different Gabor Filter Parameters on Image Retrieval by Texture. In: Proc. of IEEE 10th International Conference on Multi-Media Modelling, Brisbane, Australia, pp. 273–278 (January 2004)Google Scholar
  3. 3.
    Perreault, S., Hébert, P.: Median Filtering in Constant Time. IEEE Trans. on Image Processing 16(6), 2389–2394 (2007)CrossRefGoogle Scholar
  4. 4.
    Solbo, S., Eltoft, T.: Homomorphic Wavelet Based Statistical Despeckling of SAR Images. IEEE Trans. on Geoscience and Remote Sensing 42(4), 711–721 (2004)CrossRefGoogle Scholar
  5. 5.
    Strela, V.: Denoising via Block Wiener Filtering in Wavelet Domain. In: 3rd European Congress of Mathematics, Barcelona, Spain (July 2000)Google Scholar
  6. 6.
    Kaur, A., Singh, K.: Speckle Noise Reduction by Using Wavelets. In: National Conference on Computational Instrumentation, Chandigarh, India, pp. 198–203 (March 2010)Google Scholar
  7. 7.
    Mohideen, S.K., Perumal, S.A., Sathik, M.M.: Image Denoising Using Discrete Wavelet Transform. International Journal of Computer Science and Network Security 8(1), 213–216 (2008)Google Scholar
  8. 8.
    Solbo, S., Eltoft, T.: A Stationary Wavelet Domain Wiener Filter for Correlated Speckle. IEEE Trans. on Geoscience and Remote Sensing 46(4), 1219–1230 (2008)CrossRefGoogle Scholar
  9. 9.
    Tong, Z., Chen, X., Akram, M.N., Aksnes, A.: Compound Speckle Characterization Method and Reduction by Optical Design. Journal of Display Technology 8(3), 132–137 (2012)CrossRefGoogle Scholar
  10. 10.
    Jain, A., Bhateja, V.: A Novel Image Denoising Algorithm for Suppressing Mixture of Speckle and Impulse Noise in Spatial Domain. In: Proc. of IEEE 3rd International Conference on Electronics and Computer Technology, Kanyakumari, India, pp. 207–211 (April 2013)Google Scholar
  11. 11.
    Singh, S., Jain, A., Bhateja, V.: A Comparative Evaluation of Various Despeckling Algorithms for Medical Images. In: Proc. of (ACMICPS) CUBE International Information Technology Conference & Exhibition, Pune, India, pp. 32–37 (September 2012)Google Scholar
  12. 12.
    Jain, A., Singh, S., Bhateja, V.: A Robust Approach for Denoising and Enhancement of Mammographic Breast Masses. International Journal on Convergence Computing 1(1), 38–49 (2013)CrossRefGoogle Scholar
  13. 13.
    Bhateja, V., Urooj, S., Pandey, A., Misra, M., Lay-Ekuakille, A.: A Polynomial Filtering Model for Enhancement of Mammogram Lesions. In: Proc. of IEEE International Symposium on Medical Measurements and Applications, Gatineau(Quebec), Canada, pp. 97–100 (May 2013)Google Scholar
  14. 14.
    Bhateja, V., Urooj, S., Pandey, A., Misra, M., Lay-Ekuakille, A.: Improvement of Masses Detection in Digital Mammograms employing Non-Linear Filtering. In: Proc. of IEEE International Multi-Conference on Automation, Computing, Control, Communication and Compressed Sensing, Palai-Kottayam, Kerala, India, pp. 406–408 (2013)Google Scholar
  15. 15.
    Rahman, M., Motiur Kumar, P.K., Borucki, B., Nowinski, K.S.: Speckle noise reduction of ultrasound images using Extra-Energy Reduction function. In: International Conference on Informatics, Electronics and Vision, Dhaka, Bangladesh, pp. 1–6 (May 2013)Google Scholar
  16. 16.
    Gupta, A., Tripathi, A., Bhateja, V.: Despeckling of SAR Images via an Improved Anisotropic Diffusion Algorithm. In: Satapathy, S.C., Udgata, S.K., Biswal, B.N. (eds.) Proceedings of Int. Conf. on Front. of Intell. Comput. AISC, vol. 199, pp. 747–754. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Gupta, A., Ganguly, A., Bhateja, V.: A Noise Robust Edge Detector for Color Images using Hilbert Transform. In: Proc. of (IEEE) 3rd International Advance Computing Conference (IACC 2013), Ghaziabad (U.P.), India, pp. 1207–1212 (2013)Google Scholar
  18. 18.
    Gupta, A., Tripathi, A., Bhateja, V.: De-Speckling of SAR Images in Contourlet Domain Using a New Adaptive Thresholding. In: Proc. of IEEE 3rd International Advance Computing Conference (IACC), Ghaziabad (U.P.), India, pp. 1257–1261 (2013)Google Scholar
  19. 19.
    Bhateja, V., Tripathi, A., Gupta, A.: An Improved Local Statistics Filter for Denoising of SAR Images. In: Thampi, S.M., Abraham, A., Pal, S.K., Rodriguez, J.M.C. (eds.) Recent Advances in Intelligent Informatics. AISC, vol. 235, pp. 23–29. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice Hall (2002)Google Scholar
  22. 22.
  23. 23.
    Zhang, J., Hu, J.: Image Segmentation Based on 2D Otsu Method with Histogram Analysis. In: International Conference on Computer Science and Software Engineering, Wuhan, Hubei, pp. 105–108 (December 2008)Google Scholar
  24. 24.
    Sezgin, M., Sankur, B.: Survey Over Image Thresholding Techniques and Quantitative Performance Evaluation. Journal of Electronic Imaging 13(1), 146–165 (2004)CrossRefGoogle Scholar
  25. 25.
    Azarbad, M., Ebrahimzade, M.A., Izadian, V.: Segmentation of Infrared Images and Objectives Detection Using Maximum Entropy Method Based on the Bee Algorithm. International Journal of Computer Information Systems and Industrial Management Applications 3, 26–33 (2011)Google Scholar
  26. 26.
    Gupta, A., Ganguly, A., Bhateja, V.: An Edge Detection Approach for Images Contaminated with Gaussian and Impulse Noises. In: Mohan, S., Suresh Kumar, S. (eds.) ICSIP 2012. LNEE, vol. 222, pp. 523–533. Springer, Heidelberg (2012)Google Scholar
  27. 27.
    Jain, A., Bhateja, V.: A Versatile Denoising Method for Images Contaminated with Gaussian Noise. In: Proc. of CUBE Int. Information Technology Conf. & Exhibition, Pune, India, pp. 65–68 (2012)Google Scholar
  28. 28.
    Chumning, H., Huadong., C.W.: Edge preservation evaluation of digital speckle filters. In: IEEE International Geoscience and Remote Sensing Symposium, June 24-28, vol. 4, pp. 2471,2473 (2002)Google Scholar
  29. 29.
    Gupta, P., Srivastava, P., Bharadwaj, S., Bhateja, V.: A HVS based Perceptual Quality Estimation Measure for Color Images. ACEEE International Journal on Signal & Image Processing (IJSIP) 3(1), 63–68 (2012)Google Scholar
  30. 30.
    Gupta, P., Srivastava, P., Bhardwaj, S., Bhateja, V.: A Novel Full Reference Image Quality Index for Color Images. In: Satapathy, S.C., Avadhani, P.S., Abraham, A. (eds.) Proceedings of the InConINDIA 2012. AISC, vol. 132, pp. 245–253. Springer, Heidelberg (2012)Google Scholar
  31. 31.
    Gupta, P., Tripathi, N., Bhateja, V.: Multiple Distortion Pooling Image Quality Assessment. Inderscience Publishers International Journal on Convergence Computing 1(1), 60–72 (2013)CrossRefGoogle Scholar
  32. 32.
    Gupta, P., Srivastava, P., Bharadwaj, S., Bhateja, V.: A Modified PSNR Metric based on HVS for Quality Assessment of Color Images. In: Proc. of IEEE International Conference on Communication and Industrial Application (ICCIA), Kolkata (W.B.), pp. 96–99 (2011)Google Scholar
  33. 33.
    Jain, A., Bhateja, V.: A Full-Reference Image Quality Metric for Objective Evaluation in Spatial Domain. In: Proc. of IEEE International Conference on Communication and Industrial Application (ICCIA), Kolkata (W. B.), India, pp. 91–95 (2011)Google Scholar
  34. 34.
    Bhateja, V., Srivastava, A., Kalsi, A.: Fast SSIM Index for Color Images Employing Reduced-Reference Evaluation. In: Satapathy, S.C., Udgata, S.K., Biswal, B.N. (eds.) FICTA 2013. AISC, vol. 247, pp. 451–458. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  35. 35.
    Bhateja, V., Singh, G., Srivastava, A.: A Novel Weighted Diffusion Filtering Approach for Speckle Suppression in Ultrasound Images. In: Satapathy, S.C., Udgata, S.K., Biswal, B.N. (eds.) FICTA 2013. AISC, vol. 247, pp. 459–466. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  36. 36.
    Guo, Y., Cheng, H.D., Tian, J., Zhang, Y.: A Novel Approach to Speckle Reduction to Ultrasound Image. In: Proc. of 11th Joint Conference on Information Sciences, China, pp. 1–6 (December 2008)Google Scholar
  37. 37.
    Bhateja, V., Misra, M., Urooj, S., Lay-Ekuakille, A.: A Robust Polynomial Filtering Framework for Mammographic Image Enhancement from Biomedical Sensors. IEEE Sensors Journal, 1–10 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Vikrant Bhateja
    • 1
  • Atul Srivastava
    • 1
  • Gopal Singh
    • 1
  • Jay Singh
    • 1
  1. 1.Deptt. of Electronics & Communication Engg.SRMGPCLucknowIndia

Personalised recommendations