Performance Analysis of Asynchronous Periodic Pattern Mining Algorithms

  • G. N. V. G. Sirisha
  • Shashi Mogalla
  • G. V. Padma Raju
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 249)

Abstract

Periodic pattern is a pattern that repeats itself with a specific period in a given sequence. Patterns that occur frequently with strict periodicity in one or more subsequences separated by tolerable disturbance are called asynchronous periodic patterns. Longest Subsequence Identification (LSI) is the pioneering algorithm to mine asynchronous periodic patterns. For each asynchronous periodic pattern the algorithm detects the longest subsequence containing it. Simple Multiple Complex and Asynchronous periodic pattern miner (SMCA) is a four phase algorithm that detects all the subsequences containing asynchronous periodic patterns. One Event One Pattern (OEOP) algorithm uses a linked list structure to detect single event one patterns in a single scan of a sequence. OEOP can be used to replace the first phase of SMCA for data sets like data streams. When compared to SMCA, E-MAP can efficiently mine all patterns in a single step and single scan of the sequence in the presence of large primary memory.

Keywords

asynchronous periodic pattern periodic pattern sequence mining data streams temporal databases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dong, G., Pei, J.: Sequence Data Mining. Advances in Database Systems. Springer science (2007)Google Scholar
  2. 2.
    Srikant, R., Agarwal, R.: Mining sequential patterns: Generalizations and Performance Improvements. In: 5th International Conference on Extending Database Technology, Avignon, France, pp. 3–17 (1996)Google Scholar
  3. 3.
    Zaki, M.J.: SPADE: An Efficient Algorithm for Mining Frequent Sequences. J. Machine Learning 42, 31–60 (2001)CrossRefMATHGoogle Scholar
  4. 4.
    Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu, M.-C.: Mining sequential patterns by pattern growth: The prefixspan approach. J. IEEE Transactions on Knowledge and Data Engineering 16, 1424–1440 (2004)CrossRefGoogle Scholar
  5. 5.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn. Morgan Kaufmann (2006)Google Scholar
  6. 6.
    Wang, W., Yang, J.: Mining Sequential Patterns from Large Data Sets. Advances in Database Systems, vol. 28. Springer Science (2005)Google Scholar
  7. 7.
    Yang, J., Wang, W., Yu, P.S.: Mining Asynchronous Periodic Patterns in Time Series Data. J. IEEE Transactions on Knowledge and Data Engineering 15, 613–628 (2003)CrossRefGoogle Scholar
  8. 8.
    Huang, K.Y., Chang, C.H.: SMCA: A General Model for Mining Asynchronous Periodic Patterns in Temporal Databases. J. IEEE Transactions on Knowledge and Data Engineering 17, 774–785 (2005)CrossRefGoogle Scholar
  9. 9.
    Huang, K.-Y., Chang, C.-H.: Mining Periodic Patterns in Sequence Data. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2004. LNCS, vol. 3181, pp. 401–410. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Yeh, J.S., Lin, S.C.: A New Data Structure for Asynchronous Periodic Pattern Mining. In: 3rd International Conerence on Ubiquitous Information Management and Communication, New York, pp. 426–431 (2009)Google Scholar
  11. 11.
    Maqbool, F., Bashir, S., Baig, A.R.: E-MAP: Efficiently Mining Asynchronous Periodic Patterns. International Journal Computer Science and Network Security 6, 174–179 (2006)Google Scholar
  12. 12.
    National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov/
  13. 13.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • G. N. V. G. Sirisha
    • 1
  • Shashi Mogalla
    • 2
  • G. V. Padma Raju
    • 1
  1. 1.Department of CSES.R.K.R. Engineering CollegeBhimavaramIndia
  2. 2.Department of CS & SEA.U. College of EngineeringVisakhapatnamIndia

Personalised recommendations