Skip to main content

Mobile Based Prompted Labeling of Large Scale Activity Data

  • Conference paper
Ambient Assisted Living and Active Aging (IWAAL 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8277))

Included in the following conference series:

Abstract

This paper describes the use of a prompted labeling solution to obtain class labels for user activity and context information on a mobile device. Based on the output from an activity recognition module, the prompt labeling module polls for class transitions from any of the activities (e.g. walking, running) to the standing still activity. Once a transition has been detected the system prompts the user, through the provision of a message on the mobile phone, to provide a label for the last activity that was carried out. This label, along with the raw sensor data is then stored locally prior to being uploaded to cloud storage. The paper provides technical details of how and when the system prompts the user for an activity label and discusses the information that can be gleaned from sensor data. This system allows for activity and context information to be collected on a large scale. Data can then be used within new opportunities in data mining and modeling of user context for a variety of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Intille, S.S., Lester, J., Sallis, J.F., et al.: New Horizons in Sensor Development. Medicine & Science in Sports & Exercise 44, S24–S31 (2012)

    Google Scholar 

  2. Hamm, J., Stone, B., Belkin, M., Dennis, S.: Automatic Annotation of Daily Activity from Smartphone-Based Multisensory Streams. In: Uhler, D., Mehta, K., Wong, J.L. (eds.) MobiCASE 2012. LNICST, vol. 110, pp. 328–342. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Preece, S.J., Goulermas, J.Y., Kenney, L.P.J., et al.: Activity Identification using Body-Mounted sensors—a Review of Classification Techniques. Physiol. Meas. 30, R1–R33 (2009)

    Google Scholar 

  4. Avci, A., Bosch, S., Marin-Perianu, M., et al.: Activity Recognition using Inertial Sensing for Healthcare, Wellbeing and Sports Applications: A Survey, pp. 1–10 (2010)

    Google Scholar 

  5. Hossmann, T., Efstratiou, C., Mascolo, C.: Collecting Big Datasets of Human Activity One Checkin at a Time, pp. 15–20 (2012)

    Google Scholar 

  6. Lane, N.D., Miluzzo, E., Lu, H., et al.: A Survey of Mobile Phone Sensing. IEEE Communications Magazine 48, 140–150 (2010)

    Article  Google Scholar 

  7. Krishnan, N.C., Colbry, D., Juillard, C., et al.: Real Time Human Activity Recognition using Tri-Axial Accelerometers, pp. 1–5 (2008)

    Google Scholar 

  8. Bao, L., Intille, S.S.: Activity Recognition from User-Annotated Acceleration Data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Parkka, J., Ermes, M., Korpipaa, P., et al.: Activity Classification using Realistic Data from Wearable Sensors. IEEE Transactions on Information Technology in Biomedicine 10, 119–128 (2006)

    Article  Google Scholar 

  10. Mannini, A., Intille, S.S., Rosenberger, M., et al.: Activity Recognition using a Single Accelerometer Placed at the Wrist Or Ankle. Med. Sci. Sports Exerc. (2013); E-Published ahead of Print

    Google Scholar 

  11. Plotz, T., Chen, C., Hammerla, N.Y., et al.: Automatic Synchronization of Wearable Sensors and Video-Cameras for Ground Truth Annotation–A Practical Approach, pp. 100–103 (2012)

    Google Scholar 

  12. Cruciani, F., Donnelly, M.P., Nugent, C.D., Parente, G., Paggetti, C., Burns, W.: DANTE: A video based annotation tool for smart environments. In: Par, G., Morrow, P. (eds.) S-CUBE 2010. LNICST, vol. 57, pp. 179–188. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Lasecki, W.S., Song, Y.C., Kautz, H., et al.: Real-Time Crowd Labeling for Deployable Activity Recognition, pp. 1203–1212 (2013)

    Google Scholar 

  14. Kawaguchi, N., Watanabe, H., Yang, T., et al.: HASC2012corpus: Large Scale Human Activity Corpus and its Application (2012)

    Google Scholar 

  15. Tapia, E.M., Intille, S.S., Larson, K.: Activity recognition in the home using simple and ubiquitous sensors. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 158–175. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Harada, S., Lester, J., Patel, K., et al.: VoiceLabel: Using Speech to Label Mobile Sensor Data, pp. 69–76 (2008)

    Google Scholar 

  17. Han, M., Lee, Y., Lee, S.: Comprehensive Context Recognizer Based on Multimodal Sensors in a Smartphone. Sensors 12, 12588–12605 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Cleland, I. et al. (2013). Mobile Based Prompted Labeling of Large Scale Activity Data. In: Nugent, C., Coronato, A., Bravo, J. (eds) Ambient Assisted Living and Active Aging. IWAAL 2013. Lecture Notes in Computer Science, vol 8277. Springer, Cham. https://doi.org/10.1007/978-3-319-03092-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03092-0_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03091-3

  • Online ISBN: 978-3-319-03092-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics