Skip to main content

Verifying Livelock Freedom on Parameterized Rings and Chains

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8255)

Abstract

This paper investigates the complexity of verifying livelock freedom, self-stabilization, and weak stabilization in parameterized unidirectional ring and bidirectional chain topologies. Specifically, we illustrate that verifying livelock freedom of parameterized rings consisting of self-disabling and deterministic processes is undecidable (specifically, \(\Pi^0_1\)-complete). This result implies that verifying self-stabilization and weak stabilization for parameterized rings of self-disabling processes is also undecidable. The results of this paper strengthen previous work on the undecidability of verifying temporal logic properties in symmetric ring protocols. The proof of undecidability is based on a reduction from the periodic domino problem.

Keywords

  • Parameterized Ring
  • Linear Temporal Logic
  • Periodic Propagation
  • Weak Stabilization
  • Legitimate State

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This work was sponsored by the NSF grant CCF-1116546.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   42.79
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   54.99
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdulla, P.A., Jonsson, B., Nilsson, M., Saksena, M.: A survey of regular model checking. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 35–48. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  2. Abello, J., Dolev, S.: On the computational power of self-stabilizing systems. Theoretical Computer Science 182(1-2), 159–170 (1997)

    CrossRef  MathSciNet  MATH  Google Scholar 

  3. Apt, K.R., Kozen, D.C.: Limits for automatic verification of finite-state concurrent systems. Information Processing Letters 22(6), 307–309 (1986)

    CrossRef  MathSciNet  Google Scholar 

  4. Berger, R.: The Undecidability of the Domino Problem. Memoirs; No 1/66. American Mathematical Society (1966)

    Google Scholar 

  5. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  6. Cachera, D., Morin-Allory, K.: Verification of safety properties for parameterized regular systems. ACM Transactions on Embedded Computing Systems 4(2), 228–266 (2005)

    CrossRef  Google Scholar 

  7. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communications of the ACM 17(11), 643–644 (1974)

    CrossRef  MATH  Google Scholar 

  8. Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics (B), pp. 995–1072. Elsevier (1990)

    Google Scholar 

  9. Emerson, E.A., Kahlon, V.: Reducing model checking of the many to the few. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 236–254. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  10. Emerson, E.A., Namjoshi, K.S.: Reasoning about rings. In: Cytron, R.K., Lee, P. (eds.) POPL, pp. 85–94. ACM Press (1995)

    Google Scholar 

  11. Emerson, E.A., Namjoshi, K.S.: On reasoning about rings. International Journal of Foundations of Computer Science 14(4), 527–550 (2003)

    CrossRef  MathSciNet  MATH  Google Scholar 

  12. Farahat, A.: Automated Design of Self-Stabilization. PhD thesis, Michigan Technological University (2012)

    Google Scholar 

  13. Farahat, A., Ebnenasir, A.: A lightweight method for automated design of convergence in network protocols. TAAS 7(4), 38 (2012)

    CrossRef  Google Scholar 

  14. Farahat, A., Ebnenasir, A.: Local reasoning for global convergence of parameterized rings. In: ICDCS, pp. 496–505. IEEE (2012)

    Google Scholar 

  15. Fribourg, L., Olsén, H.: Reachability sets of parameterized rings as regular languages. Electronic Notes in Theoretical Computer Science 9, 40 (1997)

    CrossRef  Google Scholar 

  16. Funk, P., Zinnikus, I.: Self-stabilization as multiagent systems property. In: AAMAS, pp. 1413–1414. ACM (2002)

    Google Scholar 

  17. Gouda, M.G.: The theory of weak stabilization. In: Datta, A.K., Herman, T. (eds.) WSS 2001. LNCS, vol. 2194, pp. 114–123. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  18. Gouda, M.G., Acharya, H.B.: Nash equilibria in stabilizing systems. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 311–324. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  19. Gouda, M.G., Multari, N.J.: Stabilizing communication protocols. IEEE Trans. Computers 40(4), 448–458 (1991)

    CrossRef  Google Scholar 

  20. Gurevich, Y., Koriakov, I.O.: A remark on Berger’s paper on the domino problem. Siberian Mathematical Journal 13(2), 319–321 (1972)

    CrossRef  MATH  Google Scholar 

  21. Kari, J.: The nilpotency problem of one-dimensional cellular automata. SIAM Journal on Computing 21(3), 571–586 (1992)

    CrossRef  MathSciNet  MATH  Google Scholar 

  22. Klinkhamer, A.P., Ebnenasir, A.: Verifying livelock freedom on parameterized rings. Technical Report CS-TR-13-01, Michigan Technological University (July 2013), http://www.cs.mtu.edu/html/tr/13/13-01.pdf

  23. La, H.J., Kim, S.D.: A self-stabilizing process for mobile cloud computing. In: SOSE, pp. 454–462. Computer Society (2013)

    Google Scholar 

  24. Rogers, H.: Theory of recursive functions and effective computability. MIT Press (1987) (reprint from 1967)

    Google Scholar 

  25. Suzuki, I.: Proving properties of a ring of finite-state machines. Information Processing Letters 28(4), 213–214 (1988)

    CrossRef  MathSciNet  MATH  Google Scholar 

  26. Touili, T.: Regular model checking using widening techniques. Electronic Notes in Theoretical Computer Science 50(4), 342–356 (2001)

    CrossRef  Google Scholar 

  27. Wang, H., Telephone, A., Company, T.: Proving Theorems by Pattern Recognition -II. American Telephone and Telegraph Company (1961)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Klinkhamer, A.P., Ebnenasir, A. (2013). Verifying Livelock Freedom on Parameterized Rings and Chains. In: Higashino, T., Katayama, Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2013. Lecture Notes in Computer Science, vol 8255. Springer, Cham. https://doi.org/10.1007/978-3-319-03089-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03089-0_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03088-3

  • Online ISBN: 978-3-319-03089-0

  • eBook Packages: Computer ScienceComputer Science (R0)