Arithmetic Bit-Level Verification Using Network Flow Model

  • Maciej Ciesielski
  • Walter Brown
  • André Rossi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8244)


The paper presents a new approach to functional, bit-level verification of arithmetic circuits. The circuit is modeled as a network of adders and basic Boolean gates, and the computation performed by the circuit is viewed as a flow of binary data through such a network. The verification problem is cast as a Network Flow problem and solved using symbolic term rewriting and simple algebraic techniques. Functional correctness is proved by showing that the symbolic flow computed at the primary inputs is equal to the flow computed at the primary outputs. Experimental results show a potential application of the method to certain classes of arithmetic circuits.


Formal verification Functional verification Arithmetic verification Bit-level arithmetic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kaivola, R., Ghughal, R., Narasimhan, N., Telfer, A., Whittemore, J., Pandav, S., Slobodová, A., Taylor, C., Frolov, V., Reeber, E., Naik, A.: Replacing Testing with Formal Verification in Intel\(^{\scriptsize\circledR}\) CoreTM i7 Processor Execution Engine Validation. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 414–429. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Seger, C.-J.H., Jones, R.B., OLeary, J.W., Melham, T., Aagaard, M.D., Barrett, C., Syme, D.: An Industrially Effective Environment for Formal Hardware Verification. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 24(9), 1381–1405 (2005)CrossRefGoogle Scholar
  3. 3.
    Slobodova, A.: A Flexible Formal Verification Framework. In: MEMCODE 2011 (2011)Google Scholar
  4. 4.
    Pradhan, D.K., Harris, I.G. (eds.): Practical Design Verification. Cambridge University Press (2009)Google Scholar
  5. 5.
    Soos, M.: Enhanced Gaussian Elimination in DPLL-based SAT Solvers. In: Pragmatics of SAT (2010)Google Scholar
  6. 6.
    Fallah, F., Devadas, S., Keutzer, K.: Functional Vector Generation for HDL Models using Linear Programming and 3-Satisfiability. In: Proc. Design Automation Conference, pp. 528–533 (1998)Google Scholar
  7. 7.
    Brinkmann, R., Drechsler, R.: RTL-Datapath Verification using Integer Linear Programming. In: Proc. ASPDAC, pp. 741–746 (2002)Google Scholar
  8. 8.
    Zeng, Z., Talupuru, K., Ciesielski, M.: Functional Test Generation based on Word-level SAT. J. Systems Architecture 5, 488–511 (2005)CrossRefGoogle Scholar
  9. 9.
    Huang, C.-Y., Cheng, K.-T.: Using Word-level ATPG and Modular Arithmetic Constraint-Solving Techniques for Assertion Property Checking. IEEE Trans. on CAD 20(3), 381–391 (2001)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Biere, A., Heule, M., Maaren, H.V., Walsch, T.: Satisfiability Modulo Theories in Handbook of Satisfiability, ch. 12. IOS Press (2008)Google Scholar
  11. 11.
    Raudvere, T., Singh, A.K., Sander, I., Jantsch, A.: System Level Verification of Digital Signal Processing application based on the Polynomial Abstraction Technique. In: Proc. ICCAD, pp. 285–290 (2005)Google Scholar
  12. 12.
    Shekhar, N., Kalla, P., Enescu, F.: Equivalence Verification of Polynomial Data-Paths Using Ideal Membership Testing. IEEE Trans. on Computer-Aided Design 26, 1320–1330 (2007)CrossRefGoogle Scholar
  13. 13.
    Wienand, O., Wedler, M., Stoffel, D., Kunz, W., Greuel, G.: An Algebraic Approach for Proving Data Correctness in Arithmetic Data Paths. In: Proc. ICCAD, pp. 473–486 (July 2008)Google Scholar
  14. 14.
    Vasudevan, S., Viswanath, V., Sumners, R.W., Abraham, J.A.: Automatic Verification of Arithmetic Circuits in RTL using Stepwise Refinement of Term Rewriting Systems. IEEE Trans. on Computers 56, 1401–1414 (2007)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Pavlenko, E., Wedler, M., Stoffel, D., Kunz, W.: STABLE: A new QF-BV SMT Solver for hard Verification Problems combining Boolean Reasoning with Computer Algebra. In: Proc. Design Automation and Test in Europe, pp. 155–160 (2011)Google Scholar
  16. 16.
    Basith, M.A., Ahmad, T., Rossi, A., Ciesielski, M.: Algebraic approach to arithmetic design verification. In: Formal Methods in CAD, pp. 67–71 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Maciej Ciesielski
    • 1
  • Walter Brown
    • 1
  • André Rossi
    • 2
  1. 1.ECE DepartmentUniversity of MassachusettsAmherstUSA
  2. 2.Lab-STICC UMR 6285Université de Bretagne-SudLorient CedexFrance

Personalised recommendations