Skip to main content

On Rendezvous in Mobile Sensing Networks

  • Conference paper
  • First Online:
Real-World Wireless Sensor Networks

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 281))

Abstract

A rendezvous is a temporal and spatial vicinity of two sensors. In this chapter, we investigate rendezvous in the context of mobile sensing systems. We use an air quality dataset obtained with the OpenSense monitoring network to explore rendezvous properties for carbon monoxide, ozone, temperature, and humidity processes. Temporal and spatial locality of a physical process impacts the number of rendezvous between sensors, their duration, and their frequency. We introduce a rendezvous connection graph and explore the trade-off between locality of a process and the amount of time needed for the graph to be connected. Rendezvous graph connectivity has many potential use cases, such as sensor fault detection. We successfully apply the proposed concepts to track down faulty sensors and to improve sensor calibration in our deployment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beutel, J., Gruber, S., Hasler, A., Lim, R., Meier, A., Plessl, C., Talzi, I., Thiele, L., Tschudin, C., Woehrle, M., et al.: PermaDAQ: A scientific instrument for precision sensing and data recovery in environmental extremes. ACM/IEEE IPSN, In (2009)

    Google Scholar 

  2. Ceriotti, M., Mottola, L., Picco, G.P., Murphy, A.L., Guna, S., Corra, M., Pozzi, M., Zonta, D., Zanon, P.: Monitoring heritage buildings with wireless sensor networks: The Torre Aquila deployment. ACM/IEEE IPSN, In (2009)

    Google Scholar 

  3. Yim, S., Choi, Y.: Neighbor-based malicious node detection in wireless sensor networks. Wireless Sensor Network 4(9), 219–225 (2012)

    Article  Google Scholar 

  4. Farruggia, A., Re, G.L., Ortolani, M.: Detecting faulty wireless sensor nodes through stochastic classification. In: PerCom Workshops, IEEE. (2011) 148–153.

    Google Scholar 

  5. Miluzzo, E., Lane, N.D., Campbell, A.T., Olfati-Saber, R.: CaliBree: A self-calibration system for mobile sensor networks. IEEE DCOSS, In (2008)

    Google Scholar 

  6. Hasenfratz, D., Saukh, O., Thiele, L.: On-the-fly calibration of low-cost gas sensors. Springer EWSN, In (2012)

    Google Scholar 

  7. Rajasegarar, S., Leckie, C., Palaniswami, M.: Anomaly detection in wireless sensor networks. Wireless Communications, IEEE 15(4), 34–40 (2008)

    Article  Google Scholar 

  8. Hoek, G., Beelen, R., de Hoogh, K., Vienneau, D., Gulliver, J., Fischer, P., Briggs, D.: A review of land-use regression models to assess spatial variation of outdoor air pollution. Elsevier Atmospheric Environment, In (2008)

    Google Scholar 

  9. Elnahrawy, E., Nath, B.: Cleaning and querying noisy sensors. ACM WSNA, In (2003)

    Google Scholar 

  10. Hasenfratz, D., Saukh, O., Thiele, L.: Model-driven accuracy bounds for noisy sensor readings. IEEE DCOSS, In (2013)

    Google Scholar 

  11. Aberer, K., Sathe, S., Chakraborty, D., Martinoli, A., Barrenetxea, G., Faltings, B., Thiele, L.: OpenSense: Open community driven sensing of environment. ACM IWGS, In (2010)

    Google Scholar 

  12. Shi, K.: Semi-probabilistic routing in intermittently connected mobile ad hoc networks. Journal of Information Science and Engineering 26(5), 1677–1693 (2010)

    Google Scholar 

  13. Xing, G., Wang, T., Xie, Z., Jia, W.: Rendezvous planning in wireless sensor networks with mobile elements. IEEE Transactions on Mobile Computing 7(12), 1430–1443 (2008)

    Article  Google Scholar 

  14. Park, J., Moon, K., Yoo, S., Lee, S.: Optimal stop points for data gathering in sensor networks with mobile sinks. Wireless Sensor Network 4(1), 8–17 (2012)

    Article  Google Scholar 

  15. Du, J., Liu, H., Shangguan, L., Mai, L., Wang, K., Li, S.: Rendezvous data collection using a mobile element in heterogeneous sensor networks. International Journal of Distributed Sensor Networks 12, 1–12 (2012)

    Article  Google Scholar 

  16. Choi, B.J., Liang, H., Shen, X.S., Zhuang, W.: DCS: distributed asynchronous clock synchronization in delay tolerant networks. IEEE Transactions on Parallel and Distributed Systems 23(3), 491–504 (2012)

    Article  Google Scholar 

  17. Cao, Q., Abdelzaher, T., He, T., Stankovic, J.: Towards optimal sleep scheduling in sensor networks for rare-event detection. ACM/IEEE IPSN, In (2005)

    Google Scholar 

  18. Li, J.J., Faltings, B., Saukh, O., Hasenfratz, D., Beutel, J.: Sensing the air we breathe-the OpenSense Zurich dataset. AAAI, In (2012)

    Google Scholar 

  19. Lee, C.H., Kwak, J., Eun, D.Y.: Characterizing link connectivity for opportunistic mobile networking: Does mobility suffice? In: INFOCOM. (2013) 2124–2132.

    Google Scholar 

  20. Schmid, S., Wattenhofer, R.: Algorithmic models for sensor networks. WPDRTS, In (2006)

    Google Scholar 

  21. Abrams, Z., Goel, A., Plotkin, S.: Set k-cover algorithms for energy efficient monitoring in wireless sensor networks. In: ACM/IEEE IPSN. (2004) 424–432.

    Google Scholar 

  22. Gui, C., Mohapatra, P.: Power conservation and quality of surveillance in target tracking sensor networks. In: ACM MobiCom. (2004) 129–143.

    Google Scholar 

  23. Hsin, C.f., Liu, M.: Network coverage using low duty-cycled sensors: random & coordinated sleep algorithms. In: ACM/IEEE IPSN. (2004) 433–442.

    Google Scholar 

  24. Kumar, S., Lai, T.H., Balogh, J.: On k-coverage in a mostly sleeping sensor network. In: ACM MobiCom. (2004) 144–158.

    Google Scholar 

  25. Cevher, V., McClellan, J.H.: Sensor array calibration via tracking with the extended kalman filter. In: ICASSP, IEEE Computer Society (2001) 2817–2820.

    Google Scholar 

  26. Girod, L., Lukac, M., Trifa, V., Estrin, D.: The design and implementation of a self-calibrating distributed acoustic sensing platform. In: ACM SenSys. (2006) 71–84.

    Google Scholar 

  27. Koushanfar, F., Univ, R., Taft, N., Potkonjak, M.: Sleeping coordination for comprehensive sensing using isotonic regression and domatic partitions. In: INFOCOM. (2006) 1–13.

    Google Scholar 

  28. Keally, M., Zhou, G., Xing, G., Wu, J.: Exploiting sensing diversity for confident sensing in wireless sensor networks. In: INFOCOM. (2011) 1719–1727.

    Google Scholar 

  29. Hwang, J., He, T., Kim, Y.: Exploring in-situ sensing irregularity in wireless sensor networks. In: ACM SenSys. (2007) 289–303.

    Google Scholar 

  30. SGX Sensortech: MiCS-OZ-47 ozone sensor. http://goo.gl/kZ5ay

  31. Alphasense: CO-AF sensor on a digital transmitter board. http://goo.gl/9Bl5n

  32. Sensirion: SHT10 humidity and temperature sensor. http://goo.gl/LHBas

  33. Aberer, K., Hauswirth, M., Salehi, A.: A middleware for fast and flexible sensor network deployment. VLDB, In (2006)

    Google Scholar 

  34. Vucetic, S., Fiez, T., Obradovic, Z.: Examination of the influence of data aggregation and sampling density on spatial estimation. Water Resources Research 36(12), 3721–3730 (2000)

    Article  Google Scholar 

  35. Björck, A.: Numerical methods for least squares problems. SIAM, In (1996)

    Google Scholar 

Download references

Acknowledgments

We would like to thank Tonio Gsell and Jan Beutel for their technical support. Further, we thank Roman Lim, Federico Ferrari, and the anonymous reviewers for their valuable feedback that helped us to improve this chapter. This work was funded by NanoTera.ch with Swiss Confederation financing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Saukh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Saukh, O., Hasenfratz, D., Walser, C., Thiele, L. (2014). On Rendezvous in Mobile Sensing Networks. In: Langendoen, K., Hu, W., Ferrari, F., Zimmerling, M., Mottola, L. (eds) Real-World Wireless Sensor Networks. Lecture Notes in Electrical Engineering, vol 281. Springer, Cham. https://doi.org/10.1007/978-3-319-03071-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03071-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03070-8

  • Online ISBN: 978-3-319-03071-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics