A Scalable Redundant TDMA Protocol for High-Density WSNs Inside an Aircraft

  • Johannes Blanckenstein
  • Javier  Garcia-Jimenez
  • Jirka  Klaue
  • Holger  Karl
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 281)

Abstract

We present the results of a measurement campaign conducted with a wireless sensor network (WSN) deployment inside an aircraft. A robust and scalable TDMA protocol for mission-critical applications was developed, which exploits spatial diversity provided by redundant access points. The WSN, consisting of 500 sensor nodes organized in three cells with two redundant access points per cell, was installed in an Airbus A330–300. The link quality and the packet error rate with and without the redundant access points was evaluated. It was found that the packet error rate could be decreased more than four times by using the spatial diversity introduced by the dual access point approach.

Keywords

redundancy deployment performance evaluation RSSI PER 

References

  1. 1.
    Lewandowski, A., Michaelis, S., Wietfeld, C., Klaue, J., Kubisch, M.: In-cabin localization solution for optimizing manufacturing and maintenance processes for civil aircrafts. In: Position Location and Navigation Symposium (PLANS), 2012 IEEE/ION, pp. 1257–1264 (2012)Google Scholar
  2. 2.
    Österlind, F., Dunkels, A.: Approaching the maximum 802.15.4 multi-hop throughput. In: Proceedings of the Fifth ACM Workshop on Embedded Networked Sensors (HotEmNets 2008), June 2008Google Scholar
  3. 3.
    Petrova, M., Riihijarvi, J., Mahonen, P., Labella, S.: Performance study of ieee 802.15.4 using measurements and simulations. In: IEEE Wireless Communications and Networking Conference, 2006, WCNC 2006, vol. 1, pp. 487–492 (2006)Google Scholar
  4. 4.
    Lee, T.-J., Lee, H.R., Chung, M.Y.: MAC throughput limit analysis of slotted CSMA/CA in IEEE 802.15.4 WPAN. IEEE Commun. Lett. 10(7), 561–563 (2006)Google Scholar
  5. 5.
    Suriyachai, P., Roedig, U., Scott, A.: A survey of MAC protocols for mission-critical applications in wireless sensor networks. IEEE Commun. Surv. Tutorials 14(2), 240–264 (2012)CrossRefGoogle Scholar
  6. 6.
    Suriyachai, P., Roedig, U., Scott, A.: Implementation of a MAC protocol for QoS support in wireless sensor networks. In: IEEE International Conference on Pervasive Computing and Communications, 2009, PerCom 2009, pp. 1–6 (2009)Google Scholar
  7. 7.
    Felemban, E., Lee, C.-G., Ekici, E.: MMSPEED: multipath multi-SPEED protocol for QoS guarantee of reliability and timeliness in wireless sensor networks. IEEE Trans. Mobile Comput. 5, 738–754 (2006)CrossRefGoogle Scholar
  8. 8.
    Munir, S., Lin, S., Hoque, E., Nirjon, S.M.S., Stankovic, J.A., Whitehouse, K.: Addressing burstiness for reliable communication and latency bound generation in wireless sensor networks. In: Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks, IPSN ’10, pp. 303–314. New York, USA (2010)Google Scholar
  9. 9.
    Suriyachai, P., Brown, J., Roedig, U.: Time-critical data delivery in wireless sensor networks. In: Proceedings of the 6th IEEE international conference on Distributed Computing in Sensor Systems, DCOSS’10, pp. 216–229. Springer, Heidelberg (2010)Google Scholar
  10. 10.
    Chen, D., Nixon, M., Mok, A.: WirelessHART: Real-Time Mesh Network for Industrial Automation, 1st edn. Springer, NewYork (2010)CrossRefGoogle Scholar
  11. 11.
    Kaouris, A., Zaras, M., Revithi, M., Moraitis, N., Constantinou, P.: Propagation measurements inside a B737 aircraft for in-cabin wireless networks. In: IEEE Vehicular Technology Conference 2008, VTC Spring 2008, pp. 2932–2936 (2008)Google Scholar
  12. 12.
    Moraitis, N., Constantinou, P.: Radio channel measurements and characterization inside aircrafts for in-cabin wireless networks. In: IEEE 68th Vehicular Technology Conference, 2008. VTC 2008-Fall, pp. 1–5 (2008)Google Scholar
  13. 13.
    Hankins, G., Vahala, L., Beggs, J.H.: Propagation prediction inside a B767 in the 2.4 GHz and 5 GHz radio bands. In: IEEE Antennas and Propagation Society International Symposium, 2005, vol. 1A, pp. 791–794 (2005)Google Scholar
  14. 14.
    Hankins, G., Vahala, L., Beggs, J.H.: 802.11ab propagation prediction inside a B777. In: IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics 2005, pp. 837–840 (2005)Google Scholar
  15. 15.
    D’Errico, R., Rudant, L.: UHF radio channel characterization for wireless sensor networks within an aircraft. In: Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), pp. 115–119 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Johannes Blanckenstein
    • 1
  • Javier  Garcia-Jimenez
    • 1
  • Jirka  Klaue
    • 1
  • Holger  Karl
    • 2
  1. 1.EADS Innovation WorksMunichGermany
  2. 2.University PaderbornPaderbornGermany

Personalised recommendations