Skip to main content

Geometry as a Measurement-Theoretical A Priori: Lorenzen’s Defense of Relativity Against the Ontology of Its Proponents

  • Chapter
  • First Online:
Interdisciplinary Works in Logic, Epistemology, Psychology and Linguistics

Part of the book series: Logic, Argumentation & Reasoning ((LARI,volume 3))

  • 953 Accesses

Abstract

Lorenzen rejects ontological commitments of relativity. Realism of physical geometry already breaks down with Poincaré’s arguments. Lorenzen agrees with Poincaré, but offers a constructive account: space is not an empirical entity described by means of conventions , but a purely constructive entity constituted by the norms of spatial measurement . This space however, as Lorenzen argues, is Euclidean. In this paper, we shall analyse Lorenzen arguments and explicate how they relate to arguments from empiricism and neo-kantianism. It will be shown that the originality of Lorenzen’s position consists in systematically accounting for the role of measurement and measurement instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Cf. Reichenbach’s critique of Kraus: “On the basis of an apriorist philosophy, he wants to assert something about the behaviour of physical things; he wants to deduce physics from philosophy”, in Reichenbach (1978, Vol. II, 8).

  2. 2.

    In his Vorwort to Dingler’s Aufbau der exakten Fundamentalwissenschaften, Lorenzen presented Dinglers philosophy as a continuation of the Kantian transcendental philosophy after its collapse in the face of empiricist attacks in nineteenth century (Lorenzen 1964, p. 10). As an interpretation of Dingler’s philosophy this may be regarded as too benevolent. As a characterization of his own point of view it may however be accepted. In particular it is evident from this that Lorenzen’s concept of a priori is closely related to Reichenbach’s “relative a priori ” in being constitutive but not apodictic.

  3. 3.

    As is known, Kant considered the regress of splitting matter to be infinite. I agree with Wilhelm Wundt that this assumption rests on a mistake and that in effect every regress is indefinite—cf. Wundt (1910, pp. 82–83).

  4. 4.

    As a straightforward presentation of this issue cf. Leibniz’ letter to de l’Hospital, in Leibniz (2004, pp. 616–625).

  5. 5.

    This is the—very plausible—interpretation of Freudenthal (1999).

  6. 6.

    Of course inertia does not figure in Newton’s Mathematical Principles of Natural Philosophy as an explanatory baseline, but is (in definition III) attributed to matter as a faculty, the potentia resistendi. Nevertheless, this does not change the functional role of inertia in the science of mechanics.

  7. 7.

    As Michael Wolff did with the older impetus theory, cf. Wolff (19781987).

  8. 8.

    As Michael Wolff recently has shown (Wolff 2001), Kant’s notion of geometry corresponds perfectly to the idea of a theory of forms. The straight line for example is defined by Kant in purely qualitative terms as a self-similar line, i.e. as a line whose parts are similar both to each other and to the whole line. The quantitative archimedean property of being the shortest line connecting two points is inferred from this definition in a synthetical way, presenting thus a synthetic a priori judgment. Also Bertrand Russell (1896, p. 38) stressed that the straight line, “if it is to serve as the basis of metrical properties, has to be defined without reference to this properties” and thus in a purely qualitative way.

  9. 9.

    Lorenzen’s Elementrageometrie in fact fails to give a non-circular criterion of rigidity. Nevertheless this failure was not due to the strategy developed there. For a more promising realisation of this program cf. Janich (1976).

  10. 10.

    For more details on the notion of projective geometry and its use by Russell cf. Torretti (1978, pp. 303–307).

  11. 11.

    Walter (2009, pp. 194–195), is thus wrong in counting Couturat among the neo-Kantians.

  12. 12.

    As regards the role of rational principles in Couturat, cf. Bowne (1966).

  13. 13.

    A similar point of view is advanced by Michael Wolff (2001, pp. 227–232) and by Horst-Heino v. Borzeszkowski and Renate Wahsner (1995).

  14. 14.

    Lorenzen’s point of view obviously is closely related to the revival of the Lorentzian approach to relativity in the recent work of Harvey Brown (1995). For a comparison of Lorenzen and Brown, both of them referring to Lorentz, it should be noted the they used the notion of kinematics in a quite different way: For Brown kinematics includes the comparison of different frames of reference while for Lorenzen it is restricted to movements in a single frame. Brown shows that Lorentz’s approach still holds when the existence of the ether is denied—which is indeed a precondition of its reevaluation. More interesting for the present purpose is the reason of its reinvestigation. Brown links the discussion of the interpretation of the effects deduced from Lorentz-transformations directly to the concept of explanation. He suggests that an explanation must always be given in terms of a mechanism (Brown 1995, pp. 8, 24), a coupling (Brown 1995, p. 24), or an interaction (Brown 1995, p. 140), and thus that space-time is ruled out as an explanans—at least in special relativity for particles have no “space-time feelers” (Brown 1995, p. 24). In the case of general relativity Brown revises his opinion because here particles and the space-time-structure indeed interact (Brown 1995, p. 150).

References

  • G. Böhme, Ist die Protophysik eine Reinterpretation des Kantischen Apriori? in Protophysik. Für und wider eine konstruktive Wissenschaftsphilosophie der Physik, ed. by G. Böhme (Suhrkamp, Frankfurt a. M., 1976)

    Google Scholar 

  • G. Böhme, Kant’s epistemology as a theory of alienated knowledge, in Kant’s Philosophy of Physical Science, ed. by R.E. Butts (Reidel, Dordrecht, 1986), pp. 335–350

    Google Scholar 

  • H.-H.v. Borzeszkowski, R. Wahsner, Messung als Begründung oder Vermittlung? Ein Briefwechsel mit Paul Lorenzen über Protophysik und ein paar andere Dinge (Academia, Sankt Augustin, 1995)

    Google Scholar 

  • G.D. Bowne, The Philosophy of Logic 1880–1908 (Mouton, The Hague, 1966)

    Google Scholar 

  • H. Brown, Physical Relativity. Space-time Structure from a Dynamical Perspective (Clarendon Press, Oxford, 1995)

    Google Scholar 

  • R. Carnap, Der Raum, vol. 56 (Kant-Studien Ergänzungshefte, 1922)

    Google Scholar 

  • E. Cassirer, Substance and Function & Einsteins Theory of Relativity (Open Court, Chicago, 1923)

    Google Scholar 

  • L. Couturat, Compte rendu critique de l’Année philosophique, publié par F. Pillon. Revue de Métaphysique et de Morale I, 63–85 (1893a)

    Google Scholar 

  • L. Couturat, Note sur la géométrie non euclidienne et la relativité de l’espace. Revue de Métaphysique et de Morale I, 302–309 (1893b)

    Google Scholar 

  • L. Couturat, Études sur l’espace et le temps de MM. Lechalas, Poincaré, Delbœuf, Bergson, L. Weber, Evellin. Revue de Métaphysique et de Morale IV, 646–669 (1896)

    Google Scholar 

  • L. Couturat, Compte rendu critique de B. Russell, Essais sur les fondements de la géométrie. Revue de Métaphysique et de Morale IV, 354–380 (1898)

    Google Scholar 

  • P. Damerow, G. Freudenthal, P. McLaughlin, J. Renn, Exploring the Limits of Preclassical Mechanics, 2nd edn. (Springer, Berlin, 2004)

    Book  Google Scholar 

  • H. Dingler, Über den Zirkel in der empirischen Begründung der Geometrie. Kant-Studien XXX, 310–330 (1925)

    Google Scholar 

  • A. Einstein, Geometrie und Erfahrung. Erweiterte Fassung des Festvortrages gehalten an der Preussischen Akademie der Wissenschaften zu Berlin am 27. Januar 1921 (Springer, Berlin, 1921)

    Google Scholar 

  • P. Frank, Philosophy of Science: The Link between Science and Philosophy (Prentice-Hall, Englewood Cliffs, 1957)

    Book  Google Scholar 

  • H. Freudenthal, Die Grundlagen der Geometrie um die Wende des 19. Jahrhunderts. Mathematisch-Physikalische Semesterberichte 7, 2–26 (1960)

    Google Scholar 

  • G. Freudenthal, Leibniz als Transzendentalphilosoph malgré lui. Der Status der Erhaltungssätze. Studia Leibnitiana, Sonderheft 29, 9–29 (1999) Labora diligenter.

    Google Scholar 

  • A. Grünbaum, Discussion: the structure of science. Philos. Sci. 29(3), 294–305 (1962)

    Google Scholar 

  • J. Habermas, Wahrheitstheorien, in Wirklichkeit und Reflexion. Walter Schulz zum 60. Geburtstag, ed. by H. Fahrenbach (Neske, Pfullingen, 1973), pp. 211–265

    Google Scholar 

  • T.L. Heath, The Thirteen Books of Euclid’s Elements, 3 vol., 2nd edn. (Cambridge University Press, Cambridge, 1926)

    Google Scholar 

  • O. Hölder, Anschauung und Denken in der Geometrie (Teubner, Leipzig, 1900)

    Google Scholar 

  • M. Jammer, The Concept of Space: The History of Theories of Space in Physics (Dover, New York, 1993)

    Google Scholar 

  • P. Janich, Zur Protophysik des Raumes, in Protophysik, ed. by G. Böhme (Suhrkamp, Frankfurt a.M., 1976)

    Google Scholar 

  • P. Janich, Protophysics of Time: Constructive Foundation and History of Time Measurement (Reidel, Dordrecht, 1985). Originally published in german language in 1969

    Google Scholar 

  • P. Janich, Die technische Erzwingbarkeit der Euklidizität, in Entwicklungen der methodischen Philosophie, ed. by P. Janich (Suhrkamp, Franfurt a. M., 1992), pp. 68–84

    Google Scholar 

  • W. Kamlah, P. Lorenzen, Logische Propädeutik. Vorschule des vernünftigen Redens, 3rd edn. (Bibliographisches Institut, Mannheim, 1967) (Metzler, Stuttgart, 1996)

    Google Scholar 

  • I. Kant, Kritik der reinen Vernunft (2nd edition 1787). (Reimer, Berlin, 1787). Vol. III of Kant’s gesammelte Schriften. Herausgegeben von der Königl (Preuß. Akademie der Wissenschaften. Erste Abteilung: Werke, 1904)

    Google Scholar 

  • I. Kant, Lectures on logic, in The Cambridge Edition of the Works of Immanuel Kant, vol. 9 (Cambridge University Press, Cambridge, 1992)

    Book  Google Scholar 

  • G.W. Leibniz, Mathematische Schriften (Olms, Hildesheim, 1962). Reprint of the 1849 edition

    Google Scholar 

  • G.W. Leibniz, Sämtliche Schriften und Briefe, in Mathematischer, naturwissenschaflticher und technischer Briefwechsel 1694– uni 1696, vol. III.6B (Akademie Verlag, Berlin, 2004)

    Google Scholar 

  • P. Lorenzen, Vorwort, in Dingler’s Aufbau der exakten Fundamentalwissenschaften (Eidos, München, 1964)

    Google Scholar 

  • P. Lorenzen, Eine Revision der Einsteinschen Revision. Philosophia Naturalis 16, 383–391 (1976)

    Google Scholar 

  • P. Lorenzen, Relativistische Mechanik mit klassischer Geometrie und Kinematik. Mathematische Zeitschrift 155, 1–9 (1977)

    Article  Google Scholar 

  • P. Lorenzen, Die allgemeine Relativitätstheorie als eine Revision der Newtonschen Gravitationstheorie. Philosophia Naturalis 17, 1–9 (1979)

    Google Scholar 

  • P. Lorenzen, Geometrie als messtheoretisches Apriori der Physik. Physik und Didaktik 4, 291–299 (1980)

    Google Scholar 

  • P. Lorenzen, Elementargeometrie (Bibliographisches Institut, Mannheim, 1984)

    Google Scholar 

  • P. Lorenzen, Constructive Philosophy (The University of Massachusetts Press, Amherst, 1987). Transl. by Karl Richard Pavlovic

    Google Scholar 

  • E. Mach, Raum und Geometrie vom Standpunkt der Naturforschung, in Erkenntnis und Irrtum (Barth, Leipzig, 1926)

    Google Scholar 

  • P. McLaughlin, Vis viva, in Enzyklopädie Philosophie und Wissenschaftstheorie, ed. by J. Mittelstraß, vol. 4 (Metzler, Stuttgart, 1996)

    Google Scholar 

  • H. Poincaré, L’espace et le temps. Scientia 12, 159–170 (1912)

    Google Scholar 

  • H. Reichenbach, Selected Writings 1909–1953, 3 vols (Reidel, Dordrecht, 1978)

    Google Scholar 

  • B. Riemann, Ueber die Hypothesen, welche der Geometrie zu Grunde liegen, in Gesammelte mathematische Werke, pp. 304–319 (Teubner und Springer, Berlin/Leipzig, 1854) 1990

    Google Scholar 

  • B.A. Rozenfeld, A History of Non-Euclidean Geometry: Evolution of the Concept of a Geometric Space (Springer, New York, 1988)

    Book  Google Scholar 

  • B. Russell, Review of Hannequin’s L’hypothèse des atomes (1896), in Collected Papers, vol. 2, Philosophical Papers 1896–1899 (Unwin Hayman, London, 1896) 1990

    Google Scholar 

  • B. Russell, An Essay on the Foundations of Geometry (The University Press, Cambridge, 1897)

    Google Scholar 

  • D.W. Sciama, On the origin of inertia. Mon. Not. R. Astron. Soc. 113, 34–42 (1953)

    Google Scholar 

  • R. Torretti, Philosophy of Geometry form Riemann to Poincaré, volume 7 of Episteme (Reidel, Dordrecht, 1978)

    Google Scholar 

  • G. Veronese, Fondamenti di geometria a più dimensioni e a più specie di unità rettilinee esposti in forma elementare. Lezioni per la Scuola di magistero in Matematica (Tipografia del Seminario, Padova, 1891)

    Google Scholar 

  • H. von Helmholtz, Ueber die Thatsachen, die der Geometrie zu Grunde liegen, in Wissenschaftliche Abhandlungen, vol. 2 (Barth, Leipzig, 1883)

    Google Scholar 

  • H. von Helmholtz, Ueber den Ursprung und die Bedeutung der geometrischen Axiome, in Vorträge und Reden, vol. 2 (Vieweg, Braunschweig, 1896)

    Google Scholar 

  • J. von Kries, Logik. Grundzüge einer kritischen und formalen Urteilslehre (JCB Mohr (Paul Siebeck), Tübingen, 1916)

    Google Scholar 

  • S. Walter, Hypothesis and convention in Poincaré’s defence of Galilei spacetime, in The Significance of the Hypothetical in the Natural Sciences, ed. by M. Heidelberger, G. Schiemann (de Gruyter, Berlin, 2009)

    Google Scholar 

  • H. Weyl, Vorwort des Herausgebers [introduction to B. Riemann’s Ueber die Hypothesen, welche der Geometrie zu Grunde liegen (1854)], in Gesammelte mathematische Werke (Teubner und Springer, Berlin/Leipzig, 1990)

    Google Scholar 

  • E. Wind, Das Experiment und die Metaphysik (Suhrkamp, Frankfurt a. M., 2001)

    Google Scholar 

  • M. Wolff, Geschichte der Impetustheorie (Suhrkamp, Frankfurt a. M., 1978)

    Google Scholar 

  • M. Wolff, Impetus mechanics as a physical argument for copernicanism. copernicus, benedetti, galileo. Sci. Context 1(2), 215–256 (1987)

    Google Scholar 

  • M. Wolff, Geometrie und Erfahrung. Kant und das Problem der objektiven Geltung der Euklidischen Geometrie, in Kant und die Berliner Aufklärung. Akten des IX. Internationalen Kant-Kongresses, vol. 1 (de Gruyter, Berlin, 2001)

    Google Scholar 

  • W. Wundt, Kants kosmologische Antinomien und das Problem des Unendlichen, in Kleine Schriften (Verlag Wilhelm Engelmann, Leipzig, 1910), pp. 77–132

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Schlaudt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schlaudt, O. (2014). Geometry as a Measurement-Theoretical A Priori: Lorenzen’s Defense of Relativity Against the Ontology of Its Proponents. In: Rebuschi, M., Batt, M., Heinzmann, G., Lihoreau, F., Musiol, M., Trognon, A. (eds) Interdisciplinary Works in Logic, Epistemology, Psychology and Linguistics. Logic, Argumentation & Reasoning, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-03044-9_3

Download citation

Publish with us

Policies and ethics