Magnetic Imaging with Polarized Soft X-rays

  • Peter FischerEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 151)


Magnetic imaging with polarized soft x-rays offers several advantages compared to other techniques, which are available to visualize magnetic structures and magnetic behavior on microscopic levels. The ultimate spatial resolution for soft x-ray techniques, i.e. the diffraction limit set by the wavelength, will be in the few nm regime. The temporal resolution, given by the length of a single x-ray pulse is at 3rd generation synchrotron sources in the sub 100 ps regime, but should reach out into the fs regime at next generation x-ray sources, where single shot imaging should become feasible due to a sufficiently large number of photons per single x-ray pulse. The interaction of polarized soft x-rays with magnetic (ferromagnetic and antiferromagnetic) materials exhibits for element specific photon energies, which correspond to inner core electron binding energies significant magnetic cross sections. These magnetic dichroism effects serve as magnetic contrast mechanism for imaging and give quantitative information about magnetic ground state properties, such as magnetic spin and orbital moments. A full 3 dimensional information, specifically access to magnetic structures at interfaces can be obtained by imaging under certain geometries, as well as from computational magnetic tomography of 2 dimensional projection images.


Zone Plate Magnetic Imaging American Physical Society Fresnel Zone Plate Coherent Diffractive Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author would like to thank all his colleagues, who contributed to the work presented here, in particular M.-Y. Im, W. Chao, and E.H. Anderson (CXRO), L. Bocklage, and G. Meier (U Hamburg), K. Yamada, K. Kobayashi, T. Ono (U Kyoto), T. Sato, Y. Nakatani (U Chofu), H. Kohno (U Osaka), A. Thiaville (U Paris-Sud) S. Kasai (NIMS Tsukuba), S.-K. Kim, H. Jung, D.-E. Jeong, Y.-S. Choi, Y.-S. Yu, D.S. Han (SNU, Seoul), K.-S. Lee (UNIST), C.S. Fadley, A. Gray, J. Kortright, and F. Hellman (MSD LBNL) and the staff of the ALS and CXRO for excellent support. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05- CH11231.


  1. 1.
    J. Stöhr and H.C. Siegmann, Magnetism: from Fundamentals to Nanoscale Dynamics (Springer Verlag, Berlin Heidelberg, 2006)Google Scholar
  2. 2.
    A. Hubert and R. Sch¨afer, Magnetic Domains (Springer, Berlin, 1998)Google Scholar
  3. 3.
    J. Kerr, Phil. Mag. 3,321–343 (1877)Google Scholar
  4. 4.
    M. Faraday, Phil. Trans. Royal. Soc. (London) 136, 1–20 (1846)Google Scholar
  5. 5.
    H.A. Lorentz, Thèorie des phènomènes magneto-optiques rècemment dècouverts, Rapport prèsentès aux Congrès International de Physique, Paris 3, 1 (1900)Google Scholar
  6. 6.
    F. Schmidt, W. Rave, and A. Hubert, IEEE Trans. Mag. 21, 1596 (1985)Google Scholar
  7. 7.
    W.K. Hiebert, A. Stankiewicz, and M.R. Freeman, Phys. Rev. B 79, 1134 (1997)Google Scholar
  8. 8.
    J.L Erskine and E.A Stern, Phys. Rev. B 12, 5016–5024 (1975)Google Scholar
  9. 9.
    C. T. Chen, F. Sette, Y. Ma, and S. Modesti, Phys. Rev. B 42, 7262–7265 (1990)Google Scholar
  10. 10.
    P. Carra, B.T. Thole, M. Altarelli, and X. Wang, Phys. Rev. Lett. 70, 694 (1993)Google Scholar
  11. 11.
    B.T. Thole, P. Carra, F. Sette, and G. van der Laan, Phys. Rev. Lett. 68, 1943–1946 (1992)Google Scholar
  12. 12.
    J. Stoehr, Y. Wu, B.D. Hermsmeier, M.G. Samant, G. Harp, S. Koranda, D. Dunham, and B.P. Tonner, Science 259, 658 (1993)Google Scholar
  13. 13.
    P. Fischer, G. Schütz, G. Schmahl P. Guttmann and D. Raasch, Z.f. Physik B 101, 313–316 (1996)Google Scholar
  14. 14.
    W.C. Röntgen, über eine neue art von strahlen, Sitzungsberichte der Physikalisch- Medizinischen Gesellschaft zu W¨urzburg, p. 132 (1895)Google Scholar
  15. 15.
    B. Niemann, D. Rudolph, and G. Schmahl, Applied Optics 15, 1883 (1976)Google Scholar
  16. 16.
    D.T. Attwood, Soft x-rays and Extreme Ultraviolet Radiation (Cambridge University Press, 1999)Google Scholar
  17. 17.
    F. Macia, P. Warnicke, D. Bedau, M.-Y. Im, P. Fischer, D. A. Arena, and A. D. Kent, J. Magn. Magn. Mat. 324, 3629–3632 (2012)Google Scholar
  18. 18.
    M.-Y. Im, P. Fischer, T. Eim¨uller, G. Denbeaux, and S.-C. Shin, Appl. Phys. Lett. 83, 4589–4591 (2003)Google Scholar
  19. 19.
    J.R. Groves, R.F. DePaula, L. Stan, R.H. Hammond, and B.M. Clemens, IEEE Transactions on Applied Superconductivity 19, 3311 (2009)Google Scholar
  20. 20.
    C. Bordel, J. Juraszek, D. Cooke, C. Baldasseroni, S. Mankovsky, J. Minar, H. Ebert, S. Moyerman, E. Fullerton, and F. Hellman, Phys. Rev. Lett. 109, 117201 (2012)Google Scholar
  21. 21.
    B. Kaulich, D. Bacescu, D. Cocco, J. Susini, C. David C, E. DiFabrizio, S. Cabrini, G. Morrison, J. Thieme J, and M. Kiskinova, J. Phys. IV 104, 103–107 (2003)Google Scholar
  22. 22.
    P. Guttmann, C. Bittencourt, S. Rehbein, P. Umek, Xiaoxing Ke, G. Van Tendeloo, C.P. Ewels, and G.Schneider, Nature Photon. 6,25–29 (2012)Google Scholar
  23. 23.
    I. Schmid, J. Raabe, C. Quitmann, S. Vranjkovic, H.J. Hug, and R.H. Fink, Journal of Physics: Conference Series 1 86, 012015 (2009)Google Scholar
  24. 24.
    P. Thibault, M. Dierolf, A. Menzel, O. Bunk, Ch. David, and F. Pfeiffer, Science 321, 379 (2008)Google Scholar
  25. 25.
    S. Eisebitt, J. Lüning, W.F. Schlotter, M. Lörgen, O. Hellwig, W. Eberhardt, and J. Stöhr, Nature 432, 885–888 (2004)Google Scholar
  26. 26.
    T. Hauet, C. M. Guenther, B. Pfau, M. E. Schabes, J. U. Thiele, R. L. Rick, P. Fischer, S. Eisebitt, and O. Hellwig, Phys. Rev. B 77, 184421 (2008)Google Scholar
  27. 27.
    C. Tieg, R. Frömter, D. Stickler, S. Hankemeier, A. Kobs, S. Streit-Nierobisch, C. Gutt, G. Grübel, and H. P. Oepen, Optics Express 18, 27251 (2010)Google Scholar
  28. 28.
    D. Gabor, Nature 161, 777–785 (1948)Google Scholar
  29. 29.
    A. Tripathi, J. Mohanty, S. H. Dietze, O. G. Shpyrko, E. Shipton, E. E. Fullerton, S. S. Kimb, and I. McNulty, PNAS 108, 13393 (2011)Google Scholar
  30. 30.
    W. Hoppe R. Hegerl, Ber. Bunsenges. Phys. Chem. 74, 1148 (1970)Google Scholar
  31. 31.
    K. Giewekemeyer, M. Beckers, T. Gorniak, M. Grunze, T. Salditt, and A. Rosenhahn, Optics Express 19, 1037 (2011)Google Scholar
  32. 32.
    Martin Dierolf, Andreas Menzel, Pierre Thibault, Philipp Schneider, Cameron M. Kewish, Roger Wepf, Oliver Bunk, and Franz Pfeiffer, Nature 467, 436–439 (2010)Google Scholar
  33. 33.
    Roland Wiesendanger, Rev. Mod. Phys. 81, 1495–1550 (2009)Google Scholar
  34. 34.
    W. Chao, B. H. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, Nature 435, 1210 (2005)Google Scholar
  35. 35.
    E. Anderson and W. Chao, private communication.Google Scholar
  36. 36.
    J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maaßdorf, M. Ritala, and C. David, Ultramicroscopy 109, 1360-1364 (2009)Google Scholar
  37. 37.
    P. Guttmann, S. Werner, G. Schneider, S. Rehbein, S. Heim, Phys. Rev. Lett. 103, 110801 (2009)Google Scholar
  38. 38.
    T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, Science 289, 930 (2000)Google Scholar
  39. 39.
    A.Wachowiak, J.Wiebe, M. Bode, O. Pietzsch, M. Morgenstern, and R.Wiesendanger, Science 298, 577 (2002)Google Scholar
  40. 40.
    J. Miltat and A. Thiaville, Science 298, 555 (2002)Google Scholar
  41. 41.
    C. Phatak, M. Tanase, A.K. Petford-Long, and M. DeGraef, Ultramicroscopy 109, 264 (2009)Google Scholar
  42. 42.
    J. Raabe, R. Pulwey, R. Sattler, T. Schweinbock, J. Zweck, and D.Weiss, J. Appl. Phys. 88, 4437–4439 (2000)Google Scholar
  43. 43.
    J.K. Ha, R. Hertel, and J. Kirschner, Phys. Rev. B 67, 224432 (2003)Google Scholar
  44. 44.
    S.B. Choe, Y. Acremann, A. Scholl, A. Bauer, A. Doran, J. St¨ohr, and H. A. Padmore, Science 304, 420 (2004)Google Scholar
  45. 45.
    J. Raabe, C. Quitmann, C. H. Back, F. Nolting, S. Johnson, and C. Buehler, Phys. Rev. Lett. 94, 217204 (2005)Google Scholar
  46. 46.
    K. Buchanan, P.E. Roy, M. Grimsditch, F.Y. Fradin, K.Yu. Guslienko, S.D. Bader, and V. Novosad, Nature Phys. 1, 172 (2005)Google Scholar
  47. 47.
    S. Kasai, Y. Nakatani, K.. Kobayashi, H. Kohno, and T. Ono, Phys. Rev. Lett. 97, 107204 (2006)Google Scholar
  48. 48.
    B. Van Waeyenberge, A. Puzic, H. Stoll, K. W. Chou, T. Tyliszczak, R. Hertel, M. F¨ahnle, H. Br¨uckl, K. Rott, G. Reiss, I. Neudecker, D. Weiss, C. H. Back, and G. Sch¨utz, Nature 444, 461 (2006)Google Scholar
  49. 49.
    K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, H. Kohno, A. Thiaville, and T. Ono, Nature Mater. 6, 270 (2007)Google Scholar
  50. 50.
    P. Fischer, M.-Y. Im, S. Kasai K. Yamada, T. Ono, A. Thiaville, Phys. Rev. B 83, 212402 (2011)Google Scholar
  51. 51.
    P. Fischer, M.-Y. Im, C. Baldasseroni, C. Bordel, F. Hellman, J.- S. Lee, C.S. Fadley, J. Electron Spectrosc. Relat. Phenom. (2013),
  52. 52.
    P. Fischer, T. Eimuller, G. Schutz, M. Kohler, G. Bayreuther, G. Denbeaux, and D. Attwood, J. Appl. Phys. 89, 7159–7161 (2001)Google Scholar
  53. 53.
    M.-Y. Im, P. Fischer, Y. Keisuke, T. Sato, S. Kasai, Y. Nakatani, and T. Ono, Nature Comm. 3,983 (2012)Google Scholar
  54. 54.
    S.-H. Chung, D.T. Pierce, and J. Unguris, Ultramicroscopy 110, 177–181 (2010)Google Scholar
  55. 55.
    S. Kasai, P. Fischer, M-Y. Im, K. Yamada, Y. Nakatani, K. Kobayashi, H. Kohno, and T. Ono, Phys. Rev. Lett. 101, 237203 (2008)Google Scholar
  56. 56.
    N. Ohshima K. Nakano and, D. Chiba and, S. Kasai, T. Sato, Y. Nakatani, K. Sekiguchi, K. Kobayashi,, and T. Ono, Appl. Phys. Lett. 99, 262505 (2011)Google Scholar
  57. 57.
    B. Pigeau, G. de Loubens, O. Klein, A. Riegler, F. Lochner, G. Schmidt, L. W. Molenkamp, V. S. Tiberkevich, and A. N. Slavin, Appl. Phys. Lett. 96, 132506 (2010)Google Scholar
  58. 58.
    A. Drews, B. Krüger, G. Meier, S. Bohlens, L. Bocklage, T. Matsuyama, and M. Bolte, Appl. Phys. Lett. 94, 062504 (2009)Google Scholar
  59. 59.
    S.K. Kim, K.S. Lee, Y.S. Yu, and Y.S. Choi, Appl. Phys. Lett. 92, 022509 (2008)Google Scholar
  60. 60.
    S. Barman, A. Barman, and Y. Otani, J. Phys. D: Appl. Physics 43, 335001 (2010)Google Scholar
  61. 61.
    Y.S. Yu, H. Jung, K.S. Lee, P. Fischer, and S.K. Kim, Appl. Phys. Lett. 98, 052507 (2011)Google Scholar
  62. 62.
    K. Yu. Guslienko, B.A. Ivanov, V. Novosad, Y. Otani, H. Shima, and K. Fukamichi, J. Appl. Phys. 91, 8037 (2002)Google Scholar
  63. 63.
    Y.S. Choi, J.Y. Lee, M.W. Yoo, K.S. Lee, K.Y. Guslienko, and S.K. Kim, Phys. Rev. B 80, 012402 (2009)Google Scholar
  64. 64.
    K.Yu. Guslienko and V. Novosad, J. Appl. Phys. 96, 4451 (2004)Google Scholar
  65. 65.
    S.K. Kim, Y.S. Choi, K.S. Lee, K.Y. Guslienko, and D.E. Jeong, Appl. Phys. Lett. 91, 082506 (2007)Google Scholar
  66. 66.
    S. Gliga, R. Hertel, and C. M. Schneider, J. Appl. Phys.103, 07B115 (2008)Google Scholar
  67. 67.
    M.W. Yoo, K.S. Lee, D.E. Jeong, and S.K. Kim, Phys. Rev. B 82, 174437 (2010)Google Scholar
  68. 68.
    D.J. Keavney, X.M. Cheng, and K.S. Buchanan, Appl. Phys. Lett. 94, 172506 (2009)Google Scholar
  69. 69.
    Ki-Suk Lee, SangKook Choi, and Sang-Koog Kim, Appl. Phys. Lett. 87, 192502 (2005)Google Scholar
  70. 70.
    M. Fähnle R. Hertel, S. Gliga and C.M. Schneider, Phys. Rev. Lett. 98, 117201 (2007)Google Scholar
  71. 71.
    B. Van Waeyenberge, A. Puzic, H. Stoll, K. W. Chou, T. Tyliszczak, R. Hertel, M. Fähnle, H. Brückl, K. Rott, G. Reiss, I. Neudecker, D. Weiss, C. H. Back, and G. Schütz, Nature 444, 461 (2006)Google Scholar
  72. 72.
    H. Jung, K.-S. Lee, D.-E. Jeong, Y.-S. Choi, Y.-S. Yu, D.-S. Han, A. Vogel, L. Bocklage, G. Meier, M.-Y. Im, P. Fischer, and S.-K. Kim, NPG - Scientific Reports 1, 59 (2011)Google Scholar
  73. 73.
    J. Hemminger : From quanta to the continuum : Opportinities For Mesoscale Science, A Report from the Basic Energy Sciences, University of California, Irvine, U.S. Department of Energy September 2012, Prepared by the BESAC Subcommittee on Mesoscale Science. rpt.pdf (2012). Accessed 08 Apr 2013
  74. 74.
    C.A. Larabell and K.A. Nugent, Curr Opinion in Struct. Biology 20, 623 (2010)Google Scholar
  75. 75.
    D. Rüffer, R. Huber, P. Berberich, S. Albert, E. Russo-Averchi, M. Heiss, J. Arbiol, A. Fontcuberta i Morral, and D. Grundler, Nanoscale 4, 4989–4995 (2012)Google Scholar
  76. 76.
    A.X. Gray, F. Kronast, C. Papp, S.-H. Yang, S. Cramm, I. Krug, F. Salmassi, E. Gullikson, D. Hilken, E. Anderson, P. Fischer, C.M. Schneider, and C.S. Fadley, Appl. Phys. Lett. 97, 062503 (2010)Google Scholar
  77. 77.
    G. Denbeaux, P. Fischer, F. Salmassi, K. Dunn, and J. Evertsen, In Proc. 8th Int. Conf. x-ray Microscopy, eds. S. Aoki, Y. Kagoshima and Y. Suzuki (IPAP Conf. Series 7, 2006) pp.375–386Google Scholar
  78. 78.
    Parkinson DY, Knoechel C, Yang C, Larabell CA, and Le Gros MA, J. Struct. Biol. 177, 259–266 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Center for X-ray OpticsLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations