Advertisement

Predator-prey models

  • Mimmo Iannelli
  • Andrea Pugliese
Chapter
  • 1.9k Downloads
Part of the UNITEXT book series (UNITEXT, volume 79)

Abstract

Stories of lambs and wolves have been told since a very long time and the interaction between predators and preys represent the most dramatic aspect of the struggle for life 2. The incipit of Fedro's fable seems to deal with a case of competition … for the resource of a rivum eundem … but we should not trust on the wolf's complaint … since the beginning of the world wolves are wolves and lambs are lambs … each of the two species plays a precise role in the scheme of Nature … the struggle is unfair and the conclusion well expected …

Keywords

Functional Response Positive Equilibrium Basic Reproduction Number Volterra Model Coexistence Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abrams, P.A., Ginzburg, L.R.: The nature of predation: prey dependent, ratio dependent or neither?. Trends in Ecology and Evolution 15, 337–341 (2000)CrossRefGoogle Scholar
  2. 2.
    Casagrandi, R., De Leo, G., Gatto, M.: 101 problemi di ecologia. McGraw-Hill (2002)Google Scholar
  3. 3.
    Cheng, K.: Uniqueness of a limit cycle for a predator-prey system. SIAM J. Math. Anal. 12, 541–548 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    D'Ancona, U.: Der Kampf ums Dasein. Gebrüder Borntraeger (1939)Google Scholar
  5. 5.
    Elton, C., Nicholson, M.: The ten-year cycle in numbers of the lynx in Canada. Journal of Animal Ecology 11, 215–244 (1942)CrossRefGoogle Scholar
  6. 6.
    Gause, G.F.: The Struggle for Existence. Williams and Wilkins, Baltimore (1934)CrossRefGoogle Scholar
  7. 7.
    Kolmogorov, A.: Sulla teoria di Volterra della lotta per l'esistenza, Giornale dell'Istituto Ital iano degli Attuari 7, 74–80 (1936)zbMATHGoogle Scholar
  8. 8.
    Lotka, A.J.: Elements of Mathematical Biology. Dover, New York (1956)zbMATHGoogle Scholar
  9. 9.
    Messier, F.: Ungulate population models with predation : a case-study with the North-American moose. Ecology 75, 478–488 (1994)CrossRefGoogle Scholar
  10. 10.
    Monod, J.: La technique de culture continue: théorie et applications. Ann. Inst. Pasteur 79, 390–410 (1950)Google Scholar
  11. 11.
    Novick, A., Szilard, L.: Description of the chemostat, Science 112, 715–716 (1950)CrossRefGoogle Scholar
  12. 12.
    Rosenzweig, M.L., MacArthur, R.H.: Graphical representation and stability conditions of predator-prey interactions. The American Naturalist 97, 209–223 (1963)CrossRefGoogle Scholar
  13. 13.
    Rosenzweig, M.L.: Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science, new series 171, 385–387 (1971)Google Scholar
  14. 14.
    Smith, H.L., Waltman, P.: The Theory of the Chemostat. Cambrige University Press, CambrIDge (2008)zbMATHGoogle Scholar
  15. 15.
    Turchin, P.: Complex Population Dynamics: a theoretical/empirical syntesis. Monographs in population Biology, 35, Princeton University Press, New Jersey (2003)Google Scholar
  16. 16.
    Volterra, V.: Lecons sur la Théorie Mathématique de la Lutte pour la Vie. Gauthier-Villars, Paris (1931)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mimmo Iannelli
    • 1
  • Andrea Pugliese
    • 1
  1. 1.Department of MathematicsUniversity of TrentoItaly

Personalised recommendations