Tactile Feedback from the Hand

Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 95)


The last decade has seen remarkable advances in upper-limb neuroprosthetics. Several groups have developed algorithms that enable control of devices by decoding the neural signals recorded over an array of electrodes. These advances have encouraged researchers to move onto control of neuroprosthetic hands, which faces two complications: (1) hands are geometrically far more complex than arms, (2) hands are also sensitive and sophisticated sensory systems. In this chapter, we review the role of tactile and proprioceptive sensation in hand function, with a focus on the integration of multiple inputs to extract information about our haptic interactions with objects. We argue here that creating a seamless somatosensory prosthetic system will require both a detailed understanding of how individual deformations of the skin result in modulation of neurons in primary somatosensory cortex, but also how those signals are combined to create a somatosensory image.


Neuroprosthetics Somatosensory Tactile Neurofeedback 



The authors gratefully acknowledge the editing help of Hannes Saal.

This work was supported in part by R01-NS050256 (SHT).


  1. 1.
    F.W. Mott, C.S. Sherrington, Experiments upon the influence of sensory nerves upon movement and nutrition of the limbs. Preliminary communication. Proc. R. Soc. Lond. 57, 481–488 (1895)Google Scholar
  2. 2.
    K.O. Johnson, The roles and functions of cutaneous mechanoreceptors. Curr. Opin. Neurobiol. 11, 455–461 (2001)CrossRefGoogle Scholar
  3. 3.
    J.L. Ochoa, H.E. Torebjörk, Sensations evoked by intraneural microstimulation of single mechanoreceptor units innervating the human hand. J. Physiol. 342, 633–654 (1983)Google Scholar
  4. 4.
    A.W. Freeman, K.O. Johnson, A model accounting for effects of vibratory amplitude on responses of cutaneous mechanoreceptors in macaque monkey. J. Physiol. 323, 43–64 (1982)Google Scholar
  5. 5.
    M.A. Muniak, S. Ray, S.S. Hsiao, J.F. Dammann, S.J. Bensmaia, The neural coding of stimulus intensity: linking the population response of mechanoreceptive afferents with psychophysical behavior. J. Neurosci. 27, 11687–11699 (2007)CrossRefGoogle Scholar
  6. 6.
    M. Paré, C. Behets, O. Cornu, Paucity of presumptive ruffini corpuscles in the index finger pad of humans. J. Comp. Neurol. 456(3), 260–266 (2003). doi: 10.1002/cne.10519 CrossRefGoogle Scholar
  7. 7.
    B.B. Edin, Quantitative analyses of dynamic strain sensitivity in human skin mechanoreceptors. J. Neurophysiol. 92(6), 3233–3243 (2004)CrossRefGoogle Scholar
  8. 8.
    B.B. Edin, Quantitative analysis of static strain sensitivity in human mechanoreceptors from hairy skin. J. Neurophysiol. 67, 1105–1113 (1992)Google Scholar
  9. 9.
    F. Vega-Bermudez, K.O. Johnson, SA1 and RA receptive fields, response variability, and population responses mapped with a probe array. J. Neurophysiol. 81, 2701–2710 (1999)Google Scholar
  10. 10.
    R.S. Johansson, G. Westling, Signals in tactile afferents from the fingers eliciting adaptive motor responses during precision grip. Exp. Brain Res. 66, 141–154 (1987)CrossRefGoogle Scholar
  11. 11.
    T. Yoshioka, S.J. Bensmaia, J.C. Craig, S.S. Hsiao, Texture perception through direct and indirect touch: an analysis of perceptual space for tactile textures in two modes of exploration. Somatosens. Mot. Res. 24, 53–70 (2007)CrossRefGoogle Scholar
  12. 12.
    M. Hollins, S.J. Bensmaia, The coding of roughness. Can. J. Exp. Psychol. 61, 184–195 (2007)CrossRefGoogle Scholar
  13. 13.
    A.P. Sripati, S.J. Bensmaia, K.O. Johnson, A continuum mechanical model of mechanoreceptive afferent responses to indented spatial patterns. J. Neurophysiol. 95, 3852–3864 (2006)CrossRefGoogle Scholar
  14. 14.
    K. Dandekar, M.A. Srinivasan, A 3 dimensional finite element model of the monkey fingertip for predicting responses of slowly adapting mechanoreceptors. ASME Bioeng. Conf. BED-29, 257–258 (1995)Google Scholar
  15. 15.
    W.R. Loewenstein, M. Mendelson, Components of receptor adaptation in a Pacinian corpuscle. J. Physiol. 177, 337–397 (1965)Google Scholar
  16. 16.
    S.S. Kim, A.P. Sripati, S.J. Bensmaia, Predicting the timing of spikes evoked by tactile stimulation of the hand. J. Neurophysiol. 104(3), 1484–1496 (2010)CrossRefGoogle Scholar
  17. 17.
    S.S. Kim, S. Mihalas, A. Russell, Y. Dong, S.J. Bensmaïa, Does afferent heterogeneity matter in conveying tactile feedback through peripheral nerve stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. 19(5), 514–520 (2011). doi: 10.1109/TNSRE.2011.2160560 CrossRefGoogle Scholar
  18. 18.
    S.S. Kim, A.P. Sripati, R.J. Vogelstein, R.S. Armiger, A.F. Russel, S.J. Bensmaia, Conveying tactile feedback in sensorized hand neuroprostheses using a biofidelic model of mechanotransduction. IEEE TBIOCAS 1, 1–6 (2009)Google Scholar
  19. 19.
    E.G. Jones, Cortical and subcortical contributions to activity-dependent plasticity in primate somatosensory cortex. Annu. Rev. Neurosci. 23, 1–37 (2000)CrossRefGoogle Scholar
  20. 20.
    Y.C. Pei, P.V. Denchev, S.S. Hsiao, J.C. Craig, S.J. Bensmaia, Convergence of submodality specific input onto neurons in primary somatosensory cortex. J. Neurophysiol. 102(3), 1843–1853 (2009)CrossRefGoogle Scholar
  21. 21.
    A.P. Sripati, T. Yoshioka, P. Denchev, S.S. Hsiao, K.O. Johnson, Spatiotemporal receptive fields of peripheral afferents and cortical area 3b and 1 neurons in the primate somatosensory system. J. Neurosci. 26, 2101–2114 (2006)CrossRefGoogle Scholar
  22. 22.
    V. Tannan, B.L. Whitsel, M. Tommerdahl, Vibrotactile adaptation enhances spatial localization. Soc. Neurosci. Presented at the Society for Neuroscience. (2012)Google Scholar
  23. 23.
    S.B. Simons, J. Chiu, O.V. Favorov, B.L. Whitsel, M. Tommerdahl, Duration-dependent response of SI to vibrotactile stimulation in squirrel monkey. J. Neurophysiol. 97(3), 2121–2129 (2007). doi: 10.1152/jn.00513.2006 CrossRefGoogle Scholar
  24. 24.
    M.A. Harvey, H.P. Saal, J.F. Dammann, S.J. Bensmaia, Multiplexing stimulus information through rate and temporal codes in primate somatosensory cortex. PLoS Biol. 11(5), e1001558 (2013)CrossRefGoogle Scholar
  25. 25.
    S.J. Bensmaia, P.V. Denchev, J.F. Dammann III, J.C. Craig, S.S. Hsiao, The representation of stimulus orientation in the early stages of somatosensory processing. J. Neurosci. 28, 776–786 (2008)CrossRefGoogle Scholar
  26. 26.
    J.M. Yau, P.J. Fitzgerald, C.E. Connor, S.S. Hsiao, Early and intermediate representation of edge shape in the somatosensory system. Soc. Neurosci. [Soc. Neurosci. Abs. 37, 620–626] (2007)Google Scholar
  27. 27.
    J.M. Yau, A. Pasupathy, P.J. Fitzgerald, S.S. Hsiao, C.E. Connor, Analogous intermediate shape coding in vision and touch. PNAS 106(38), 16457–16462 (2009). doi: 10.1073/pnas.0904186106 CrossRefGoogle Scholar
  28. 28.
    Y.C. Pei, S.S. Hsiao, J.C. Craig, S.J. Bensmaia, Shape invariant representations of motion direction in somatosensory cortex. PLoS Biol. 8(2), e1000305 (2010)CrossRefGoogle Scholar
  29. 29.
    Y.C. Pei, S.S. Hsiao, J.C. Craig, S.J. Bensmaia, Neural mechanisms of tactile motion integration in somatosensory cortex. Neuron 69, 1–12 (2011)CrossRefGoogle Scholar
  30. 30.
    C.D. Salzman, K.H. Britten, W.T. Newsome, Cortical microstimulation influences perceptual judgements of motion direction. Nature 346, 174–177 (1990)CrossRefGoogle Scholar
  31. 31.
    E. Salinas, A. Hernandez, A. Zainos, R. Romo, Periodicity and firing rate as candidate neural codes for the frequency of vibrotactile stimuli. J. Neurosci. 20, 5503–5515 (2000)Google Scholar
  32. 32.
    M. Randolph, J. Semmes, Behavioral consequences of selective ablations in the postcentral gyrus of Macaca mulatta. Brain Res. 70, 55–70 (1974)CrossRefGoogle Scholar
  33. 33.
    C.E. Connor, K.O. Johnson, Neural coding of tactile texture: comparison of spatial and temporal mechanisms for roughness perception. J. Neurosci. 12, 3414–3426 (1992)Google Scholar
  34. 34.
    J.J. DiCarlo, K.O. Johnson, S.S. Hsiao, Structure of receptive fields in area 3b of primary somatosensory cortex in the alert monkey. J. Neurosci. 18, 2626–2645 (1998)Google Scholar
  35. 35.
    E.P. Gardner, J.Y. Ro, K.S. Babu, S. Ghosh, Neurophysiology of prehension. II. Response diversity in primary somatosensory (S-I) and motor (M-I) cortices. J. Neurophysiol. 97(2), 1656–1670 (2007). doi: 10.1152/jn.0. 1031.2006CrossRefGoogle Scholar
  36. 36.
    L. Rincon-Gonzalez, J.P. Warren, D.M. Meller, S.H. Tillery, Haptic interaction of touch and proprioception: implications for neuroprosthetics. IEEE Trans. Neural Syst. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. 19(5), 490–500 (2011). doi: 10.1109/TNSRE.2011.2166808 CrossRefGoogle Scholar
  37. 37.
    N.A. Fitzsimmons, W. Drake, T.L. Hanson, M.A. Lebedev, M.A. Nicolelis, Primate reaching cued by multichannel spatiotemporal cortical microstimulation. J. Neurosci. 27, 5593–5602 (2007)CrossRefGoogle Scholar
  38. 38.
    B.M. London, L.R. Jordan, C.R. Jackson, L.E. Miller, Electrical stimulation of the proprioceptive cortex (area 3a) used to instruct a behaving monkey. IEEE Trans. Neural Syst. Rehabil. Eng. 16, 32–36 (2008)CrossRefGoogle Scholar
  39. 39.
    R. Romo, A. Hernández, A. Zainos, E. Salinas, Somatosensory discrimination based on cortical microstimulation. Nature 392, 387–390 (1998)CrossRefGoogle Scholar
  40. 40.
    M.J. Nichols, W.T. Newsome, Middle temporal visual area microstimulation influences veridical judgments of motion direction. J. Neurosci. 22, 9530–9540 (2002)Google Scholar
  41. 41.
    D.J. Weber, B.M. London, J.A. Hokanson, C.A. Ayers, R.A. Gaunt, R.R. Torres, B. Zaaimi et al., Limb-state information encoded by peripheral and central somatosensory neurons: implications for an afferent interface. IEEE Trans. Neural Syst. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. 19(5), 501–513 (2011). doi: 10.1109/TNSRE.2011.2163145 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Organismal Biology and AnatomyUniversity of ChicagoChicagoUSA
  2. 2.School of Biological and Health Systems EngineeringArizona State UniversityTempeUSA

Personalised recommendations