Advertisement

Transmission of Musculotendon Forces to the Index Finger

  • Sang Wook Lee
  • Derek G. Kamper
Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 95)

Abstract

This chapter reviews work completed by the authors and others to examine the mechanisms of musculotendon force transmission to the index finger and, ultimately, to generation of desired force at or movement of the fingertip. Specifically we examined the roles of finger posture, passive joint impedance, anatomical pulleys, and the extensor hood in mapping muscle forces to finger dynamics. Results from in vivo and in vitro experiments, as well as from biomechanical modeling of the musculotendon structure of the index finger, are provided. These findings can inform both the study of motor control of the hand and the potential design of robotic end-effectors.

Keywords

Index finger Musculotendon Moment arm Posture Passive joint impedance Pulley Extensor hood 

Notes

Acknowledgments

This work was supported in part by Coleman Foundation, and in part by the National Institute of Health under Grant 1R01NS052369-01A1 (NINDS).

References

  1. 1.
    R. Tubiana, The Hand (W.B. Saunders, Philadelphia, 1981)Google Scholar
  2. 2.
    T.E. Milner, S.S. Dhaliwal, Activation of intrinsic and extrinsic finger muscles in relation to the fingertip force vector. Exp. Brain Res. 146, 197–204 (2002)CrossRefGoogle Scholar
  3. 3.
    J.R. Doyle, Anatomy of the finger flexor tendon sheath and pulley system. J. Hand Surg. 25A, 489–498 (1988)Google Scholar
  4. 4.
    R. Wheeler Haines, The extensor apparatus of the finger. J. Anat. 85, 251–259 (1951)Google Scholar
  5. 5.
    J.M.F. Landsmeer, The anatomy of the dorsal aponeurosis of the human finger and its functional significance. Anat. Rec. 104, 31–44 (1949)CrossRefGoogle Scholar
  6. 6.
    E. Zancoli, Structural and Dynamic Bases of Hand Surgery, 2nd edn. (Lippincott, Philadelphia, 1979)Google Scholar
  7. 7.
    M. Garcia-Elias, K.N. An, L.J. Berglund, R.L. Linscheid, W.P. Cooney, E.Y. Chao, Extensor mechanism of the finger. I. A quantitative geometric study. J. Hand Surg. 16A, 1130–1136 (1991)CrossRefGoogle Scholar
  8. 8.
    J.A. Clavero, P. Golano, O. Farinas, X. Alomar, J.M. Monill, M. Esplugas, Extensor mechanism of the fingers: MR imaging-anatomic correlation. Radiographics 23, 593–611 (2003)CrossRefGoogle Scholar
  9. 9.
    N. Brook, J. Mizrahi, M. Shoham, J. Dayan, A biomechanical model of index finger dynamics. Med. Eng. Phys. 17, 54–63 (1995)CrossRefGoogle Scholar
  10. 10.
    J.L. Sancho-Bru, A. Perez-Gonzalez, M. Vergara-Monedero, D. Giurintano, A 3-D dynamic model of human finger for studying free movements. J. Biomech. 34, 1491–1500 (2001)CrossRefGoogle Scholar
  11. 11.
    L. Vigouroux, F. Quaine, A. Labarre-Vila, F. Moutet, Estimationof finger muscle–tendon tensions and pulley forces during specificsport-climbing grip techniques. J. Biomech. 39, 2583–2592 (2006)CrossRefGoogle Scholar
  12. 12.
    L. Vigouroux, F. Quaine, A. Labarre-Vila, D. Amarantini, F. Moutet, Using EMG data to constrain optimization procedure improves finger tendon tension estimations during static fingertip force production. J. Biomech. 40, 2846–2856 (2007)CrossRefGoogle Scholar
  13. 13.
    S.K. Sarrafian, L.E. Kazarian, L.K. Topouzian, V.K. Sarrafian, A. Siegelman, Strain variation in the components of the extensor apparatus of the finger during flexion and extension: a biomechanical study. J. Bone Joint Surg. 52, 980–990 (1970)Google Scholar
  14. 14.
    P.T. Hurlbut, B.D. Adams, Analysis of finger extensor mechanism strains. J. Hand Surg. 20A, 832–840 (1995)CrossRefGoogle Scholar
  15. 15.
    M.A. Maier, M.C. Hepp-Reymond, EMG activation patterns during force production in precision grip, I. Contribution of 15 finger muscles to isometric force. Exp. Brain Res. 103, 108–122 (1995)CrossRefGoogle Scholar
  16. 16.
    M.A. Maier, M.C. Hepp-Reymond, EMG activation patterns during force production in precision grip, II. Muscular synergies in the spatial and temporal domain. Exp. Brain Res. 103, 123–136 (1995)CrossRefGoogle Scholar
  17. 17.
    F. J. Valero-Cuevas, F. E. Zajac, C. G. Burgar, Large index finger tip forces are produced by subject-independent patterns of muscle excitation. J. Biomech. 31, 693–703 (1998)Google Scholar
  18. 18.
    R.T. Lauer, K.L. Kilgore, P.H. Peckham, N. Bhadra, M.W. Keith, The function of the finger intrinsic muscles in response to electrical stimulation. IEEE Trans. Rehabil. Eng. 7, 19–26 (1999)CrossRefGoogle Scholar
  19. 19.
    W.L. Buford, S. Koh, C.R. Andersen, S.F. Viegas, Analysis of intrinsic-extrinsic muscle function through interactive three-dimensional kinematic simulation and cadaver studies. J. Hand Surg. 30A, 1267–1275 (2005)CrossRefGoogle Scholar
  20. 20.
    S. Koh, W.L. Buford, C.R. Andersen, S.F. Viegas, Intrinsic muscle contribution to the metacarpophalangeal joint flexion moment of the middle, ring, and small fingers. J. Hand Surg. 31A, 1111–1117 (2006)CrossRefGoogle Scholar
  21. 21.
    J.Z. Wu, K.N. An, R.G. Cutlip, K. Krajnak, D. Welcome, R.G. Dong, Analysis of musculoskeletal loading in an index finger during tapping. J. Biomech. 41, 668–676 (2008)CrossRefGoogle Scholar
  22. 22.
    D.G. Kamper, T.G. Hornby, W.Z. Rymer, Extrinsic flexor muscles generate concurrent flexion of all three finger joints. J. Biomech. 35, 1581–1589 (2002)CrossRefGoogle Scholar
  23. 23.
    S.W. Lee, D.G. Kamper, Modeling of multiarticular muscles: Importance of inclusion of tendon–pulley interactions in the finger. IEEE Trans. Biomed. Eng. 56, 2253–2262 (2009)CrossRefGoogle Scholar
  24. 24.
    F.E. Zajac, Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17, 359–411 (1989)Google Scholar
  25. 25.
    A. Esteki, J.M. Mansour, An experimentally based nonlinear viscoelastic model of joint passive moment. J. Biomech. 29, 443–450 (1996)CrossRefGoogle Scholar
  26. 26.
    J.S. Knutson, K.L. Kilgore, J.M. Mansour, P.E. Crago, Intrinsic and extrinsic contributions to the passive moment at the metacarpophalangeal joint. J. Biomech. 33, 1675–1681 (2000)CrossRefGoogle Scholar
  27. 27.
    E.G. Cruz, D.G. Kamper, Use of a novel robotic interface to study finger motor control. Ann. Biomed. Eng. 38, 259–268 (2010)CrossRefGoogle Scholar
  28. 28.
    Y. Youm, T.T. Gillespie, A.E. Flatt, B.L. Sprague, Kinematic investigation of normal MCP joint. J. Biomech. 11, 109–118 (1978)CrossRefGoogle Scholar
  29. 29.
    K. N. An, W. P. Cooney, in Biomechanics of the hand, ed. B.F. Morrey. Joint Replacement Arthroplasty (Churchill Livingstone, New York, 1991)Google Scholar
  30. 30.
    A. Minami, K.N. An, W.P. Cooney, R.L. Linscheid, Ligament stability of the MCP joint: a biomechanical study. J. Hand Surg. 10A(2), 255–260 (1985)CrossRefGoogle Scholar
  31. 31.
    K.N. An, Y. Ueba, E.Y. Chao, W.P. Cooney, R.L. Linscheid, Tendon excursion and moment arm of index finger muscle. J. Biomech. 16, 419–425 (1983)CrossRefGoogle Scholar
  32. 32.
    S.W. Lee, H. Chen, J.D. Towles, D.G. Kamper, Estimation of the effective static moment arms of the tendons in the index finger extensor mechanism. J. Biomech. 41, 1567–1573 (2008)CrossRefGoogle Scholar
  33. 33.
    S.W. Lee, H. Chen, J.D. Towles, D.G. Kamper, Effect of finger posture on the tendon force distribution within the finger extensor mechanism. J. Biomech. Eng. T. ASME 130, 051014 (2008)CrossRefGoogle Scholar
  34. 34.
    A.M. Gordon, A.F. Huxley, F.J. Julian, The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J. Physiol. 184, 170–192 (1966)Google Scholar
  35. 35.
    D.G. Kamper, H.C. Fischer, E.G. Cruz, Impact of finger posture on mapping from muscle activation to joint torque. Clin. Biomech. 21, 361–369 (2006)CrossRefGoogle Scholar
  36. 36.
    D. Qiu, H. C. Fischer, D. G. Kamper, Muscle activation patterns during force generation of the index finger, in Proceedings of IEEE Engineering in Medicine and Biology Society Conference (EMBC 2009), pp. 3987–3990, 2009Google Scholar
  37. 37.
    N. K. Fowler, A. C. Nicol, B. Condon, D. Hadley, Method of determination of three dimensional index finger moment arms and tendon lines of action using high resolution MRI scans. J. Biomech. 34, 791–797 (2001)Google Scholar
  38. 38.
    R. Tubiana, P. Valentin, The anatomy of the extensor apparatus of the finger. Surg. Clin. North Am. 44, 897–906 (1964)Google Scholar
  39. 39.
    R.A. Beekman, A.E. Abbot, N.L. Taylor, M.P. Rosenwasser, R.J. Strauch, Extensor mechanism slide for the treatment of proximal interphalangeal joint extension lag: an anatomic study. J. Hand Surg. 29A, 1063–1068 (2004)CrossRefGoogle Scholar
  40. 40.
    T.A. El-Gammal, C.M. Steyers, W.F. Blair, J.A. Maynard, Anatomy of the oblique retinacular ligament of the index finger. J. Hand Surg. 18A, 717–721 (1993)CrossRefGoogle Scholar
  41. 41.
    J.R. Doyle, Palmar and digital flexor tendon pulleys. Clin. Orthop. Relat. Res. 383, 84–96 (2001)CrossRefGoogle Scholar
  42. 42.
    P.W. Brand, K.C. Cranor, J.C. Ellis, Tendon and pulleys at the metacarpophalangeal joint of a finger. J. Bone Joint Surg. 57A, 779–784 (1975)Google Scholar
  43. 43.
    W.W. Peterson, P.R. Manske, B.A. Bollinger, P.A. Lesker, J.A. McCarthy, Effect of pulley excision of flexor tendon biomechanics. J. Orthop. Res. 4, 96–101 (1986)CrossRefGoogle Scholar
  44. 44.
    G.T. Lin, P.C. Amadio, K.N. An, W.P. Cooney, Functional anatomy of the human digital flexor pulley system. J. Hand Surg. 14, 949–956 (1989)CrossRefGoogle Scholar
  45. 45.
    G. Mitsionis, J.A. Bastidas, R. Grewal, H.J. Pfaeffle, K.J. Fischer, M.M. Tomaino, Feasibility of partial A2 and A4 pulley excision: effect on finger flexor tendon biomechanics. J. Hand Surg. 24A, 310–314 (1999)CrossRefGoogle Scholar
  46. 46.
    D. Rispler, D. Greenwald, S. Shumway, C. Allan, D. Mass, Efficiency of the flexor tendon pulley system in human cadaver hands. J. Hand Surg. 21A, 444–450 (1996)CrossRefGoogle Scholar
  47. 47.
    I. Roloff, V.R. Schöffl, L. Vigouroux, F. Quaine, Biomechanical model for the determination of the forces acting on the finger pulley system. J. Biomech. 39, 915–923 (2006)CrossRefGoogle Scholar
  48. 48.
    S. W. Lee, D. G. Kamper, Higher antagonist co-contraction in hand osteoarthritis leads to detrimental joint mechanics, in Proceedings of the 34th Annual Meeting of American Society of Biomechanics, Providence, 2010Google Scholar
  49. 49.
    M.D. Lewek, D.K. Ramsey, L. Snyder-Mackler, K.S. Rudolph, Knee stabilization in patients with medial compartment knee osteoarthritis. Arthritis Rheum. 52, 2845–2853 (2005)CrossRefGoogle Scholar
  50. 50.
    K. Traylor, S. W. Lee, B. Ellis, J. Weiss, D. Kamper, Tensile properties of the extensor hood in support of a finite element model, in Proceedings of Biomedical Engineering Society Annual Meeting, Hartford, 2011Google Scholar
  51. 51.
    F.J. Valero-Cuevas, J.W. Yi, D. Brown, R.V. McNamara III, C. Paul, H. Lipson, The tendon network of the fingers performs anatomical computation at a macroscopic scale. IEEE Trans. Biomed. Eng. 54, 1161–1166 (2007)CrossRefGoogle Scholar
  52. 52.
    W. Penfield, T. Rasmussen, The Cerebral Cortex of Man. A Clinical Study of Localization of Function (Macmillan, New York, 1950)Google Scholar
  53. 53.
    F.J. Valero-Cuevas, J.D. Towles, V.R. Hentz, Quantification of fingertip force reduction in the forefinger following simulated paralysis of extensor and intrinsic muscles. J. Biomech. 33, 1601–1609 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringThe Catholic University of AmericaWashingtonUSA
  2. 2.Center for Applied Biomechanics and Rehabilitation ResearchMedStar National Rehabilitation HospitalWashingtonUSA
  3. 3.Department of Biomedical EngineeringIllinois Institute of TechnologyChicagoUSA
  4. 4.Sensory Motor Performance ProgramRehabilitation Institute of ChicagoChicagoUSA

Personalised recommendations