Advertisement

Biomimicry and the Design of Multigrasp Transradial Prostheses

  • H. Atakan VarolEmail author
  • Skyler A. Dalley
  • Tuomas E. Wiste
  • Michael Goldfarb
Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 95)

Abstract

This chapter discusses some important design objectives regarding the design of multigrasp prosthetic hands, and describes two approaches toward the design of such hands. The first approach is highly biomimetic in nature, particularly with regard to the location of actuators within the prostheses, and the nature of the mapping between the neural command (e.g., electromyogram, or EMG) and movement. The second approach represents a compromised degree of biomimicry, in which some aspects of the biological system are retained, while other aspects are discarded in recognition of the spatial and sensory design constraints associated with upper extremity amputees.

Keywords

Artificial limbs Transradial prosthesis Biomimetic design Mechatronics 

References

  1. 1.
    Y. Kamikawa, T. Maeno, Underactuated five-finger prosthetic hand inspired by grasping force distribution of humans, in IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 717–722, Sep 2008Google Scholar
  2. 2.
    J.L. Pons, E. Rocon, R. Ceres, D. Reynaerts, B. Saro, S. Levin, W. Van Moorleghem, The MANUS-HAND dextrous robotics upper limb prosthesis mechanical and manipulation aspects. Auton. Robots 16(2), 143–163 (2004)CrossRefGoogle Scholar
  3. 3.
    J.U. Chu, D.H. Jung, Y.J. Lee, Design and control of a multifunction myoelectric hand with new adaptive grasping and self-locking mechanisms, in Proceedings of 2008 IEEE Conference on Robotics and Automation, pp. 743–748, May 2008Google Scholar
  4. 4.
    C. Cipriani, M. Controzzi, M.C. Carrozza, Progress towards the development of the SmartHand transradial prosthesis, in Proceedings of 2009 IEEE Conference on Rehabilitation Robotics, pp. 682–687, June 2009Google Scholar
  5. 5.
    C. Cipriani, M. Controzzi, M.C. Carrozza, Objectives, criteria and methods for the design of the SmartHand transradial prosthesis. Robotica 28, 919–927 (2010)CrossRefGoogle Scholar
  6. 6.
    C.M. Light, P.H. Chappel, Development of a lightweight and adaptable multiple-axis hand prosthesis. Med. Eng. Phys. 22, 679–684 (2000)CrossRefGoogle Scholar
  7. 7.
    S. Jung, I. Moon, Grip force modeling of a tendon-driven prosthetic hand, in International Conference on Control, Automation, and Systems, pp. 2006–2009, 2008Google Scholar
  8. 8.
    C. Pylatiuk, S. Mounier, A. Kargov, S. Schulz, G. Bretthauer, Progress in the development of a multifunctional hand prosthesis, in Proceedings of the 2004 IEEE Engineering in Medicine and Biology Society, vol. 2, pp. 4260–4263, Sep 2004Google Scholar
  9. 9.
    A. Kargov, C. Pylatiuk, R. Oberle, H. Klosek, T. Werner, W. Roessler, S. Schulz, Development of a multifunctional cosmetic prosthetic hand, in Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics, pp. 550–553, 2007Google Scholar
  10. 10.
    C.L. Taylor, R.J. Schwarz, The anatomy and mechanics of the human hand. Artif. Limbs A Rev. Curr. Dev. 2(2), 22–35 (1955)Google Scholar
  11. 11.
    M.R. Cutkosky, On grasp choice, grasp models, and the design of hands for manufacturing tasks, in IEEE Transactions on Robotics and Automation, vol. 5, no. 3, 1989Google Scholar
  12. 12.
    C. Jacobson-Sollerman, L. Sperling, Grip function of the healthy hand in a standardized hand function test. Scand. J. Rehabil. Med. 9, 123–129 (1977)Google Scholar
  13. 13.
    C. Sollerman, V. Ejeskar, Sollerman hand function test: a standardized method and its use in tetraplegic patients. Scand. J. Plast. Reconstr. Surg. Hand Surg. 29(2), 167–176 (1995)CrossRefGoogle Scholar
  14. 14.
    C. Pylatuik, A. Kargov, S. Schulz, L. Doderlein, Distribution of grip force in three different functional prehension patterns. J. Med. Eng. Technol. 30(3), 176–182 (2006)CrossRefGoogle Scholar
  15. 15.
    A. Kargov, C. Pylatuik, J. Martin, S. Schulz, L. Doderlein, A comparison of the grip force distribution in natural hands and in prosthetic hands. Disabil. Rehabil. 26(12), 705–711 (2004)CrossRefGoogle Scholar
  16. 16.
    N. Smaby, M.E. Johanson, B. Baker, D.E. Kenney, W.M. Murray, V.R. Hentz, Identification of key pinch forces required to complete functional tasks. J. Rehabil. Res. Dev. 41(2), 215–224 (2004)CrossRefGoogle Scholar
  17. 17.
    R.G Radwin, S. Oh, T.R. Jensen, J.G. Webster, External finger forces in submaximal five-finger static pinch prehension. Ergonomics, vol. 35, no. 3, pp. 275–288, 1992Google Scholar
  18. 18.
    N.K. Fowler, A.C. Nicol, Measurement of external three-dimensional interphalangeal loads applied during activities of daily living. Clin. Biomech. 14, 646–652 (1999)CrossRefGoogle Scholar
  19. 19.
    W.K. Purves, N. Berme, Resultant finger joint loads in selected activities. J. Biomed. Eng. 2, 285–289 (1980)CrossRefGoogle Scholar
  20. 20.
    B. Redmond, R. Aina, T. Gorti, B. Hannaford, Haptic characteristics of some activities of daily living, in North American Haptics Symposium 2010, March 2010Google Scholar
  21. 21.
    R.F. Weir, Design of artificial arms and hands for prosthetic applications, ed. by K.P. McCombs. Standard Handbook of Biomedical Engineering and Design, (McGraw Hill, New York, 2003), pp. 32.1–32.61Google Scholar
  22. 22.
    D.H. Silcox, M.D. Rooks, R.R. Vogel, L.L. Fleming, Myoelectric prostheses. A long-term follow-up and a study of the use of alternate prostheses. J. Bone Joint Surg. Am. 75, 1781 (1993)Google Scholar
  23. 23.
    D.J. Atkins, D.C.J. Heard, W.H. Donovan, Epidemiologic overview of individuals with upper-limb loss and their reported research priorities. J. Prosthet. Orthot. 8(1), 85–92 (1996)Google Scholar
  24. 24.
    P.J. Kyberd, J.J. Davey, J.D. Morrison, A survey of upper-limb prosthesis users in Oxfordshire. J. Prosthet. Orthot. 10(4), 85–92 (1998)Google Scholar
  25. 25.
    C.E. Clauser, J.T. McConville, J.M. Young, Weight, volume and center of mass of segments of the human body. AMRL-TR-69-70, Wright Patterson Airforce Base, Dayton, Ohio, 1969Google Scholar
  26. 26.
    J.T. Belter, A.M. Dollar, Performance characteristics of anthropomorphic prosthetic hands, in Proceedings of the 2007 IEEE International Conference on Rehabilitation Robotics, pp. 1–7, 2011Google Scholar
  27. 27.
    C. Pylatiuk, S. Schulz, Using the internet for an anonymous survey of myoelectrical prosthesis wearers, in Proceedings of the Myoelectric Controls Symposium, pp. 255–257, Aug 2005Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • H. Atakan Varol
    • 1
    Email author
  • Skyler A. Dalley
    • 2
  • Tuomas E. Wiste
    • 3
  • Michael Goldfarb
    • 2
  1. 1.Department of RoboticsNazarbayev UniversityAstanaKazakhstan
  2. 2.Department of Mechanical EngineeringVanderbilt UniversityNashvilleUSA
  3. 3.Interdepartmental Research Center “E. Piaggio”University of PisaPisaItaly

Personalised recommendations