Multimodal Tactile Sensor

  • Nicholas Wettels
  • Jeremy A. Fishel
  • Gerald E. Loeb
Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 95)

Abstract

We have developed a finger-shaped sensor array (BioTac®) that provides simultaneous information about contact forces, microvibrations and thermal fluxes, mimicking the full cutaneous sensory capabilities of the human finger. For many tasks, such as identifying objects or maintaining stable grasp, these sensory modalities are synergistic. For example, information about the material composition of an object can be inferred from the rate of heat transfer from a heated finger to the object, but only if the location and force of contact are well controlled. In this chapter we introduce the three sensing modalities of our sensor and consider how they can be used synergistically. Tactile sensing and signal processing is necessary for human dexterity and is likely to be required in mechatronic systems such as robotic and prosthetic limbs if they are to achieve similar dexterity.

Keywords

Force and tactile sensing Biomimetics Dexterous manipulation Thermal sensing Texture 

Notes

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. 0912260 Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

References

  1. 1.
    J.C. Rothwell, M.M. Traub, B.L. Day, J.A. Obesko, P.K. Thomas, C.D. Marsden, Manual motor performance in a deafferenated man. Brain 105, 515–542 (1982)CrossRefGoogle Scholar
  2. 2.
    G. Westling, R.S. Johansson, Factors influencing the force control during precision grip. Exp. Brain Res. 53(2), 277–284 (1984)CrossRefGoogle Scholar
  3. 3.
    R.D. Howe, Tactile sensing and control of robotic manipulation. J. Adv. Robot. 8(3), 245–261 (1994)CrossRefGoogle Scholar
  4. 4.
    M.H. Lee, H.R. Nichols, Tactile sensing for mechatronics—a state of the art survey. Mechatronics 9, 1–31 (1999)CrossRefGoogle Scholar
  5. 5.
    C. Melchiorri, Tactile sensing for robotic manipulation. Ramsete: Lecture Notes in Control and Information Sciences, vol. 270 (Springer, Berlin, 2001)Google Scholar
  6. 6.
    R.S. Dahiya, G. Metta, M. Valle, G. Sandini, Tactile sensing—from humans to humanoids. IEEE Trans. Rob. 26(1), 1–20 (2010)CrossRefGoogle Scholar
  7. 7.
    N. Wettels, V. J. Santos, R. S. Johansson, G. E. Loeb, Biomimetic tactile sensor array. Adv. Rob. 22(7), 829–849 (2008)Google Scholar
  8. 8.
    J. Fishel, V. J. Santos, G. E. Loeb, A robust microvibration sensor for biomimetic fingertips, in Proceedings IEEE International Conference on Biomedical Robotics and Biomechatronics, Scottsdale, AZ, pp. 659–663, 2008Google Scholar
  9. 9.
    D. Roy, N. Wettels, G. E. Loeb, Elastomeric skin selection for a fluid-filled artificial fingertip. J. Appl. Polym. Sci., in press (online 7 June 2012)Google Scholar
  10. 10.
    C. H. Lin, T. W. Erickson, J. A. Fishel, N. Wettels, G. E. Loeb, Signal processing and fabrication of a biomimetic tactile sensor array with thermal, force and microvibration modalities, in IEEE International Conference on Robotics and Biomimetics, 129–134, 2009Google Scholar
  11. 11.
    C.M. Bishop, Neural Networks for Pattern Recognition (University Press, Oxford, 1995)Google Scholar
  12. 12.
    N. Wettels, Biomimetic tactile sensor for object identification and grip control, Dissertation, University of Southern California, May 2011Google Scholar
  13. 13.
    M.T. Hagan, M. Menhaj, Training multilayer networks with the Marquardt algorithm. IEEE Trans. Neural Networks 5, 989–993 (1994)CrossRefGoogle Scholar
  14. 14.
    W. S. Sarle, Stopped training and other remedies for overfitting, in Proceedings of the 27th Symposium on the Interface of Computing Science and Statistics, pp. 352–360, 1995Google Scholar
  15. 15.
    K.T. Lau, W. Guo, B.M. Kiernan, C. Slater, D. Diamond, Non-linear carbon dioxide determination using infrared gas sensors and neural networks with Bayesian regularization. Sens. Actuators B 1(2), 242–247 (2009)CrossRefGoogle Scholar
  16. 16.
    G. McLachlan, D. Peel, Finite Mixture Models (Wiley, New York, 2000)Google Scholar
  17. 17.
    S. Calinon, Robot Programming by Demonstration: A Probabilistic Approach (EPFL/CRC Press, Lausanne, 2009)Google Scholar
  18. 18.
    V.B. Mountcastle, R.H. LaMotte, G. Carli, Detection thresholds for stimuli in humans and monkeys: comparison with threshold events in mechanoreceptive afferent nerve fibers innervating the monkey hand. J. Neurophysiol. 35, 122–136 (1972)Google Scholar
  19. 19.
    R.S. Johansson, U. Landstrom, R. Lundstrom, Responses of mechanoreceptive afferent units in glabrous skin of the human hand to sinusoidal skin displacements. Brain Res. 244(1), 17–25 (1982)CrossRefGoogle Scholar
  20. 20.
    A. Pruski, B. Mutel, Direct contact sensors based on carbon fibre, in IEEE international conference on Robotics and Factories of the Future, pp. 409–415, 1984Google Scholar
  21. 21.
    J.A. Fishel, G.E. Loeb, Bayesian exploration for intelligent identification of textures. Front. Neurorobotics 6(4), 1–20 (2012)Google Scholar
  22. 22.
    R. D. Howe, M. R. Cutkosky, Sensing skin acceleration for texture and slip perception, in Proceedings IEEE International Conference on Robotics and Automation, Scottsdale, vol. 1, pp. 145–150, 1989Google Scholar
  23. 23.
    S. Selvarasah et al., A Three-dimensional thermal sensor based on single walled carbon nanotubes, in 14th International Conference on Solid-State Sensors, Actuators and Microsystems, pp. 1023–1026, Lyon, June 2007Google Scholar
  24. 24.
    Y. J. Yang et al., A wireless flexible temperature and tactile sensing array for robot applications in Proceedings Of Fourth International Symposium on Precision Mechanical Measurements, Dec 2008Google Scholar
  25. 25.
    T. Someya et al., Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. PNAS 102(35), 2321–12325 (2005)CrossRefGoogle Scholar
  26. 26.
    K. Shida, J. Yuji, Thermal-type tactile sensor for material discrimination and contact pressure sensing, in Proceedings of 41st Annual SICE Conference, vol. 1, pp. 588–589, Aug 2002Google Scholar
  27. 27.
    A. Persichetti, F. Vecchi, M. C. Carrozza, Optoelectronic-based flexible contact sensor for prosthetic hand application, in IEEE Conference on Rehabilitation Robotics, Netherlands, pp. 415–420, 2007Google Scholar
  28. 28.
    D.C. Spray, Cutaneous temperature receptors. Ann. Rev. Physiol. 48, 625–638 (1986)CrossRefGoogle Scholar
  29. 29.
    E. Marin, The Role of Thermal Effusivity. Phys. Teach. 44, 432–434 (2006)Google Scholar
  30. 30.
    L. A. Jones, Perception and control of finger forces, in Proceedings of ASME Dynamic Systems and Control Division, pp. 133–137, 1998Google Scholar
  31. 31.
    S. Allin, Y. Matsuoka, R. Klatzky, Measuring just noticeable differences for haptic force feedback: Implications for rehabilitation, in Proceedings 10th Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems, pp. 299–302, 2002Google Scholar
  32. 32.
    J. Scheibert, S. Leurent, A. Prevost, The role of fingerprints in the coding of tactile information probed with a biomimetic sensor. Science, 323(5920), 1503–1506 (2009)Google Scholar
  33. 33.
    L. A. Jones, M. Berris, Material discrimination and thermal perception, in Proceedings of the 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 137–142, 2003Google Scholar
  34. 34.
    Z. Su, J. A. Fishel, T. Yamamoto, G. E. Loeb, Use of tactile feedback to control exploratory movements to characterize object compliance. Front. Neurorobotics 6, 7 (2012). (doi:  10.3389/fnbot.2012.00007)Google Scholar
  35. 35.
    N. Wettels, G. E. Loeb, Haptic feature extraction from a biomimetic tactile sensor: force, contact location and curvature, in Proceedings of IEEE/RAS International Conference on Robotics and Biomimetics, Phuket Thailand, 2011Google Scholar
  36. 36.
    N. Wettels, J. A. Fishel, Z. Su, C. H. Lin, G. E. Loeb, Multi-modal synergistic tactile sensing. tactile sensing in humanoids—tactile sensors and beyond workshop, in 9th IEEE/RAS International Conference on Humanoid Robots, Paris, 2009Google Scholar
  37. 37.
  38. 38.
    R.S. Fearing, Tactile sensing mechanisms. Int. J. Robot. Res. 9(3), 3–23 (1990)CrossRefGoogle Scholar
  39. 39.
    N. Futai, K. Matsumoto, I. Shimoyama, A flexible micromachined planar spiral inductor for use as an artificial tactile mechanoreceptor. Sens. Actuators, A 111(2–3), 293–303 (2004)CrossRefGoogle Scholar
  40. 40.
  41. 41.
    Z. Pan, Z. Zhu, Flexible full-body tactile sensor of low cost and minimal output connections for service robot. Ind. Robot Int. J. 32(6), 485–491 (2005)Google Scholar
  42. 42.
  43. 43.
  44. 44.
  45. 45.
    L. Beccai et al., Design and fabrication of a hybrid silicon three-axial force sensor for biomechanical applications. Sens. Actuators A 120, 370–382 (2005)CrossRefGoogle Scholar
  46. 46.
    Y.-L. Park, C. Majidi, R. Kramer, P. Berard, R. J. Wood, Hyperelastic pressure sensing with a liquid-embedded elastomer. J. Micromech. Microeng. 20(12), 125029 (2010)Google Scholar
  47. 47.
    J. Engel et al, Flexible multimodal tactile sensing system for object identification, in Proceedings of IEEE EXCO SENSORS, Daegu, Oct 2006Google Scholar
  48. 48.
    P. Dario, D. De Rossi, C. Domenici, R. Francesconi, Ferroelectric polymer tactile sensors with anthropomorphic features, in Proceedings IEEE International Conference on Robotics and Automation. Washington DC, vol. 1, pp. 332–340, 1984Google Scholar
  49. 49.
    R.D. Howe, M.R. Cutkosky, Dynamic tactile sensing: perception of fine surface features with stress rate sensing. IEEE Transact. Robot. Autom. 9(2), 140–151 (1993)CrossRefGoogle Scholar
  50. 50.
    D. Hristu, N. Ferrier, R. W. Brockett, The performance of a deformable-membrane tactile sensor: basic results on geometrically-defined tasks, in Proceedings IEEE International Conference on Robotics and Automation, San Francisco, vol. 1, pp. 508–513, 2000Google Scholar
  51. 51.
    M. Ohka, Optical Three-axis tactile sensor, Mobile Robots: Perception & Navigation, InTech, 111–136 (2007)Google Scholar
  52. 52.
    E. E. Mitchell, R. DeMoyer, J. Vranish, A new MetGlas sensor. IEEE Trans. Industr. Electron. IE-33(2), 166–170 (1986)Google Scholar
  53. 53.
    J. M. Vranish, in Magnetoresistive Skin for Robots, ed. by A. Pugh. Robot Sensors, vol. 2: Tactile and Non-Vision (IFS Publications/Springer, New York, 1986), pp. 99–111Google Scholar
  54. 54.
    B. L. Hutchings, A. R. Grahn, R. J. Petersen, Multiple-layer cross field ultrasonic tactile sensor, in Proceedings IEEE International Conference on Robotics and Automation, vol. 3, pp. 2522–2528, 1996Google Scholar
  55. 55.
    A. R. Grahn, L. Astle, Robotic Ultrasonic Force Sensor Arrays, ed. by A. Pugh. Robot Sensors, vol. 2: Tactile and Non-Vision (IFS Publications/Springer, New York, 1986), pp. 297–315Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Nicholas Wettels
    • 1
    • 2
  • Jeremy A. Fishel
    • 1
    • 2
  • Gerald E. Loeb
    • 1
    • 2
  1. 1.Syntouch LLCLos AngelesUSA
  2. 2.Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations