Dynamic Tactile Sensing

Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 95)


Dynamic tactile sensing is an important capability for interacting with the world to identify textures and identify contact events such as objects making and breaking contact with the skin and rolling or slipping on the fingers. It is also used for identifying friction between the fingers and a grasped object and regulating the grasp force accordingly. Humans are endowed with multiple types of mechanoreceptors capable of detecting dynamic events with frequencies in the tens or hundreds of Hz. Increasingly, robots are also being equipped with tactile sensors capable of detecting dynamic phenomena, using a variety of different transducers depending on application-specific design considerations. Advances in electronics have made it possible to do the requisite amplification, signal processing and communication within the hand, with improved performance and greatly reduced wiring in comparison to early efforts.


Active sensors Ampliers Capacitive sensors Contact motion Design principles Dynamic range Frequency response Human sensing Instrumentation Mechanoreceptors Optical sensors Piezoelectric Psychophysical tests PVDF Skin Skin acceleration Sliding Slip Strain rate sensor Stress rate sensor Vibration 


  1. 1.
    R.S. Johansson, A.B. Vallbo, Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J. Physiol. 286(1), 283 (1979)Google Scholar
  2. 2.
    R.S. Johansson, J.R. Flanagan, Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 10(5), 345–359 (2009)Google Scholar
  3. 3.
    S.J. Lederman, R.L. Klatzky, C.L. Hamilton, G.I. Ramsay, Perceiving surface roughness via a rigid probe: effects of exploration speed and mode of touch. Haptics-e Electron. J. Haptic Res. 1(1), 1–20 (1999)Google Scholar
  4. 4.
    T. Yoshioka, J. Zhou, Factors involved in tactile texture perception through probes. Adv. Robot. 23(6), 747–766 (2009)CrossRefGoogle Scholar
  5. 5.
    I. Birznieks, P. Jenmalm, A.W. Goodwin, R.S. Johansson, Encoding of direction of fingertip forces by human tactile afferents. J. Neurosci. 21(20), 8222–8237 (2001)Google Scholar
  6. 6.
    A.B. Vallbo, R.S. Johansson, Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. Hum. Neurobiol. 3, 3–14 (1984)Google Scholar
  7. 7.
    M. Ueda, K. Iwata, H. Shingu, Tactile sensors for an industrial robot to detect a slip, in Proceedings of the 2nd International Symposium on Industrial Robots, pp. 63–70, 1972Google Scholar
  8. 8.
    R. Masuda, K. Hasegawa, Slip sensor of industrial robot and its application. Electr. Eng. 96(5), 219–226 (1976)Google Scholar
  9. 9.
    P.A. Schmidt, E Mael, R Wurtz, E. Maël, R.P. Würtz, A sensor for dynamic tactile information with applications in human robot interaction and object exploration. Robot. Auton. Syst. 54(12), 1005–1014 (2006)Google Scholar
  10. 10.
    R.A. Russell, Using tactile whiskers to measure surface contours, in Proceedings 1992 IEEE International Conference on Robotics and Automation (IEEE Computer Society Press, 1992), pp. 1295–1299Google Scholar
  11. 11.
    Van Anh Ho, D. Kondo, S. Okada, T. Araki, E. Fujita, M. Makikawa, S. Hirai, Development of a low-profile sensor using electro-conductive yarns in recognition of slippage, in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2011), pp. 1946–1953Google Scholar
  12. 12.
    R.D. Howe, N. Popp, P. Akella, I. Kao, M.R. Cutkosky. Grasping, manipulation, and control with tactile sensing. In Proceedings of IEEE International Conference on Robotics and Automation (IEEE Computer Society Press, 1990), pp. 1258–1263Google Scholar
  13. 13.
    R.D. Howe, M.R. Cutkosky, Dynamic tactile sensing: perception of fine surface features with stress rate sensing. IEEE Trans. Robot. Autom. 9(2), 140–151 (1993)CrossRefGoogle Scholar
  14. 14.
    J.S. Son, E.A. Monteverde, R.D. Howe, A tactile sensor for localizing transient events in manipulation. In Proceedings of the 1994 IEEE International Conference on Robotics and Automation (IEEE Computer Society Press, 1994), pp. 471–476Google Scholar
  15. 15.
    J.M. Romano, K. Hsiao, G. Niemeyer, S. Chitta, K.J. Kuchenbecker, Human-inspired robotic grasp control with tactile sensing. IEEE Trans. Rob. 27(6), 1067–1079 (2011)CrossRefGoogle Scholar
  16. 16.
    M.R. Tremblay, M.R. Cutkosky, Estimating friction using incipient slip sensing during a manipulation task, in Proceedings of IEEE International Conference on Robotics and Automation, vol. 1, pp. 429–434, 1993Google Scholar
  17. 17.
    P. Dario, D. De Rossi, C. Domenici, R. Francesconi, Ferroelectric polymer tactile sensors with anthropomorphic features, in Proceedings of IEEE International Conference on Robotics and Automation, vol. 1 (Institute of Electrical and Electronics Engineers, 1984), pp. 332–340Google Scholar
  18. 18.
    R.W. Patterson, G.E. Nevill, The induced vibration touch sensor—a new dynamic touch sensing concept. Robotica 4(01), 27–31 (1986)CrossRefGoogle Scholar
  19. 19.
    E.S. Kolesar, C.S. Dyson, R.R. Reston, R.C. Fitch, D.G. Ford, S.D. Nelms, Tactile integrated circuit sensor realized with a piezoelectric polymer, in Proceedings of Eighth Annual IEEE International Conference on Innovative Systems in Silicon (IEEE, 1996), pp. 372–381Google Scholar
  20. 20.
    S. Ando, H. Shinoda, Ultrasonic emission tactile sensing. IEEE Control Syst. Mag. 15(1), 61–69 (1995)CrossRefGoogle Scholar
  21. 21.
    G. Canepa, R. Petrigliano, M. Campanella, D. De Rossi, Detection of incipient object slippage by skin-like sensing and neural network processing. IEEE Trans. Syst. Man Cybern. Part B 28(3), 348–356 (1998)Google Scholar
  22. 22.
    J.T. Dennerlein, R.D Howe, P.A. Millman, Vibrotactile feedback for industrial telemanipulators, in Proceedings of the Sixth Annual Symposium on Haptic Interfaces (ASME IMECE, Dallas, 1997), pp. 1–7Google Scholar
  23. 23.
    B. Choi, H.R. Choi, S. Kang, Development of tactile sensor for detecting contact force and slip, in 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2005), pp. 2638–2643Google Scholar
  24. 24.
    A. Mingrino, P. Dario, A. Sabatini. A hand prosthesis with slippage control by tactile sensors, in Proceedings of the 15th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 1993), pp. 1276–1277Google Scholar
  25. 25.
    A.M. Dollar, L.P. Jentoft, J.H. Gao, R.D. Howe, Contact sensing and grasping performance of compliant hands. Auton. Robot. 28(1), 65–75 (2009)CrossRefGoogle Scholar
  26. 26.
    M.A. Qasaimeh, S. Sokhanvar, J. Dargahi, M. Kahrizi, PVDF-based microfabricated tactile sensor for minimally invasive surgery. J. Microelectromech. Syst. 18(1), 195–207 (2009)CrossRefGoogle Scholar
  27. 27.
    R.S. Dahiya, M. Valle, G. Metta, L. Lorenzelli, A. Adami, Design and fabrication of posfet devices for tactile sensing, in Transducers 2009, International Conference on Solid-State Sensors, Actuators and Microsystems (IEEE, 2009), pp 1881–1884Google Scholar
  28. 28.
    R.S Dahiya, L. Lorenzelli, G. Metta, M. Valle, POSFET devices based tactile sensing arrays. Ferroelectrics 893–896 (2010)Google Scholar
  29. 29.
    R. Kikuuwe, A. Sano, H. Mochiyama, N. Takesue, H. Fujimoto, A tactile sensor capable of mechanical adaptation and its use as a surface deflection detector. Strain 256–259 (2004)Google Scholar
  30. 30.
    B.L. Hutchings, A.R. Grahn, R.J. Petersen, Multiple-layer cross-field ultrasonic tactile sensor, in Proceedings of the 1994 IEEE International Conference on Robotics and Automation (IEEE Computer Society Press, 1994), pp. 2522–2528Google Scholar
  31. 31.
    S. Omata, Real time robotic tactile sensor system for the determination of the physical properties of biomaterials. Sens. Actuators A 112(2–3), 278–285 (2004)CrossRefGoogle Scholar
  32. 32.
    H. Shinoda, K. Matsumoto, S. Ando, Acoustic resonant tensor cell for tactile sensing, in Proceedings of International conference on Robotics and Automation, vol. 4, pp. 3087–3092, 1997Google Scholar
  33. 33.
    H. Shinoda, S. Sasaki, K. Nakamura, Instantaneous evaluation of friction based on ARTC tactile sensor, in Proceedings ICRA ‘00 IEEE International Conference on Robotics and Automation, vol. 3, pp. 2173–2178, 2000Google Scholar
  34. 34.
    V. Todorova, D. Kolev, Piezoelectric resonance sensor array, in Proceedings of 27th International Spring Seminar on Electronics Technology: Meeting the Challenges of Electronics Technology Progress, vol 2 (IEEE, 2004), pp. 247–251Google Scholar
  35. 35.
    M. Shikida, T. Shimizu, K. Sato, K. Itoigawa, Active tactile sensor for detecting contact force and hardness of an object. Sens. Actuators A 103(1–2), 213–218 (2003)CrossRefGoogle Scholar
  36. 36.
    R.D. Howe, W.J. Peine, D.A. Kantarinis, J.S. Son, Remote palpation technology. IEEE Eng. Med. Biol. Mag. 14(3), 318–323 (1995)CrossRefGoogle Scholar
  37. 37.
    D.T.V. Pawluk, J.S. Son, P.S. Wellman, W.J. Peine, R.D. Howe, A distributed pressure sensor for biomechanical measurements. J. Biomech. Eng. 120(2), 302–305 (1998)CrossRefGoogle Scholar
  38. 38.
    J. Ulmen, M. Cutkosky, A robust, low-cost and low-noise artificial skin for human-friendly robots, in IEEE International Conference on Robotics and Automation (ICRA), pp. 4836–4841, 2010Google Scholar
  39. 39.
    G. Cannata, M. Maggiali, G. Metta, G. Sandini, An embedded artificial skin for humanoid robots, in IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (IEEE, 2008), pp. 434–438Google Scholar
  40. 40.
    A. Schmitz, M. Maggiali, L. Natale, B. Bonino, G. Metta, A tactile sensor for the fingertips of the humanoid robot iCub. Inform. pp. 2212–2217 (2010)Google Scholar
  41. 41.
    B. Heyneman, J. Ulmen, M.R. Cutkosky, Scalable and responsive articial skin for mobile manipulation, in 7th ACM/IEEE International Conference on Human-Robot Interaction ed. by G. Cannata, F. Mastrogiovanni, G. Metta, L. Natale, Advances in tactile sensing and touch based human-robot interaction, Boston, MA, 2012Google Scholar
  42. 42.
    N. Wettels, V.J. Santos, R.S. Johansson, G.E. Loeb, Biomimetic tactile sensor array. Adv. Robot. 22(8), 829–849 (2008)CrossRefGoogle Scholar
  43. 43.
    H.B. Muhammad, C. Recchiuto, C.M. Oddo, L. Beccai, C.J. Anthony, M.J. Adams, M.C. Carrozza, M.C.L. Ward, A capacitive tactile sensor array for surface texture discrimination. Microelectron. Eng. 88(8), 1811–1813 (2011)CrossRefGoogle Scholar
  44. 44.
    Florian De Boissieu, C. Godin, B. Guilhamat, D. David, C. Serviere, D. Baudois, Tactile texture recognition with a 3-axial force MEMS integrated articial finger. Houille Blanche Revue Internationale De L’Eau, 2010Google Scholar
  45. 45.
    C.M.Oddo, L.Beccai, M.Felder, F.Giovacchini, M.C.Carrozza, Artificial roughness encoding with a bio-inspired MEMS-based tactile sensor array. Sensors 9(5), 3161–3183 (2009)Google Scholar
  46. 46.
    C. Schürmann, R. Haschke, H. Ritter, Modular high speed tactile sensor system with video interface, in Tactile sensing in HumanoidsTactile Sensors and beyond IEEE-RAS Conference on Humanoid Robots, no. 12. IEEE Paris, France, 2009Google Scholar
  47. 47.
    T. Maeno, T. Kawamura, S.-C. Cheng, Friction estimation by pressing an elastic finger-shaped sensor against a surface. IEEE Trans. Robot. 20(2), 222–228 (2004)Google Scholar
  48. 48.
    V. Maheshwari, R.F. Saraf, High-resolution thin-film device to sense texture by touch. Science 312(5779), 1501–1504 (2006)Google Scholar
  49. 49.
    D. Yamada, T. Maeno, Y. Yamada, Artificial finger skin having ridges and distributed tactile sensors used for grasp force control, in Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the societal role of robotics in the next millennium (Cat. No.01CH37180), vol. 2 (IEEE, 2001), pp. 686–691Google Scholar
  50. 50.
    A.M. Mazid, R.A. Russell. A robotic opto-tactile sensor for assessing object surface texture, In 2006 IEEE Conference on Robotics, Automation and Mechatronics (IEEE, 2006), pp. 1–5Google Scholar
  51. 51.
    S. O’Sullivan, R. Nagle, J.A. McEwen, V. Casey. Elastomer rubbers as deflection elements in pressure sensors: investigation of properties using a custom designed programmable elastomer test rig. J.Phys. D Appl. Phys. 36(15), 1910–1916 (2003)Google Scholar
  52. 52.
    J.C. Lötters, W. Olthuis, P.H. Veltink, P. Bergveld, The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J. Micromech. Microeng. 7(3), 145–147 (1997)CrossRefGoogle Scholar
  53. 53.
    R.S. Fearing, J.M. Hollerbach, Basic solid mechanics for tactile sensing. Int. J.Robot. Res. 4(3), 40–54 (1985)CrossRefGoogle Scholar
  54. 54.
    M.R. Cutkosky, R.D. Howe, W.R. Provancher, Force and Tactile Sensors ed. by B. Siciliano, O. Khatib. Springer Handbook of Robotics, chapter 20 (Springer, Heidelberg, 2008), pp. 455–476Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringStanford UniversityStanfordUSA

Personalised recommendations