Optimizing the Topology of Tendon-Driven Fingers: Rationale, Predictions and Implementation

  • Joshua M. Inouye
  • Jason J. Kutch
  • Francisco J. Valero-Cuevas
Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 95)

Abstract

Tendon-driven mechanisms in general, and tendon-driven fingers in particular, are ubiquitous in nature, and are an important class of bio-inspired mechatronic systems. However, the mechanical complexity of tendon-driven systems has hindered our understanding of biological systems and the optimization of the design, performance, control, and construction of mechatronic systems. Here we apply our recently-developed analytical approach to tendon-driven systems [1] to describe a novel, systematic approach to analyze and optimize the routing of tendons for force-production capabilities of a reconfigurable 3D tendon-driven finger. Our results show that these capabilities could be increased by up to 277 % by rerouting tendons and up to 82 % by changing specific pulley sizes for specific routings. In addition, we validate these large gains in performance experimentally. The experimental results for 6 implemented tendon routings correlated very highly with theoretical predictions with an \( R^{2} \) value of 0.987, and the average effect of unmodeled friction decreased performance an average of 12 %. We not only show that, as expected, functional performance can be highly sensitive to tendon routing and pulley size, but also that informed design of fingers with fewer tendons can exceed the performance of some fingers with more tendons. This now enables the systematic simplification and/or optimization of the design and construction of novel robotic/prosthetic fingers. Lastly, this design and analysis approach can now be used to model complex biological systems such as the human hand to understand the synergistic nature of anatomical structure and neural control.

Keywords

Biologically-inspired robots Mechanism design 

Notes

Acknowledgments

The authors gratefully acknowledge the help of Dr. Manish Kurse in providing the data acquisition routine for the experimental procedure, and Dr. Veronica Santos for construction of the gimbal used in the experiments.

References

  1. 1.
    J.M. Inouye, J.J. Kutch, F.J. Valero-Cuevas, A novel synthesis of computational approaches enables optimization of grasp quality of tendon-driven hands. IEEE Trans. Rob. 1–9 (2012) Google Scholar
  2. 2.
    S. Jacobsen, E. Iversen, D. Knutti, R. Johnson, K. Biggers, Design of the utah/mit dextrous hand. IEEE Int. Conf. Rob. Autom. 3, 1520–1532 (1986)Google Scholar
  3. 3.
    J.K. Salisbury, J.J. Craig, Articulated hands: Force control and kinematic issues. Int. J. Robot. Res. 1(1), 4 (1982)CrossRefGoogle Scholar
  4. 4.
    Shadow Dexterous Hand, Shadow Robot Company Google Scholar
  5. 5.
    M. Grebenstein, A. Albu-Schffer, T. Bahls, M. Chalon, O. Eiberger, W. Friedl, R. Gruber, U. Hagn, R. Haslinger, H. Hppner, The dlr hand arm system, Submitted to ICRA, vol. 11Google Scholar
  6. 6.
    R.O. Ambrose, H. Aldridge, R.S. Askew, R.R. Burridge, W. Bluethmann, M. Diftler, C. Lovchik, D. Magruder, F. Rehnmark, Robonaut: Nasa’s space humanoid. IEEE Intell. Syst. Appl. 15(4), 57–63 (2000)CrossRefGoogle Scholar
  7. 7.
    B.M. Jau, Dexterous telemanipulation with four fingered hand system, in Proceedings of IEEE International Conference on Robotics and Automation, vol. 1, pp. 338–343, 1995Google Scholar
  8. 8.
    B. Massa, S. Roccella, M.C. Carrozza, P. Dario, Design and development of an underactuated prosthetic hand, in Proceedings of IEEE International Conference on Robotics and Automation (ICRA’02), vol. 4, pp. 3374–3379, 2002Google Scholar
  9. 9.
    L.R. Lin,s H.P. Huang, Mechanism design of a new multifingered robot hand, in Proceedings of 1996 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1471–1476, 1996Google Scholar
  10. 10.
    H. Kawasaki, T. Komatsu, K. Uchiyama, Dexterous anthropomorphic robot hand with distributed tactile sensor: Gifu hand II. IEEE/ASME Trans. Mechatronics 7(3), 296–303 (2002)CrossRefGoogle Scholar
  11. 11.
    A. Namiki, Y. Imai, M. Ishikawa, M. Kaneko, Development of a high-speed multifingered hand system and its application to catching, in Proceedings of 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), vol. 3, pp. 2666–2671, 2003Google Scholar
  12. 12.
    I. Yamano, T. Maeno, Five-fingered robot hand using ultrasonic motors and elastic elements, in Proceedings of the 2005 IEEE International Conference on Robotics and Automation (ICRA 2005), pp. 2673–2678, 2005Google Scholar
  13. 13.
    I. Gaiser, S. Schulz, A. Kargov, H. Klosek, A. Bierbaum, C. Pylatiuk, R. Oberle, T. Werner, T. Asfour, G. Bretthauer, A new anthropomorphic robotic hand, in Prooceedings of 8th IEEE-RAS International Conference on Humanoid Robots, pp. 418–422, 2008Google Scholar
  14. 14.
    J.L. Pons, R. Ceres, F. Pfeiffer, Multifingered dextrous robotics hand design and control: a review. Robotica 17(6), 674 (1999)CrossRefGoogle Scholar
  15. 15.
    F. Firmani, A. Zibil, S.B. Nokleby, R.P. Podhorodeski, Wrench capabilities of planar parallel manipulators. part I: wrench polytopes and performance indices. Robotica 26(06), 791–802 (2008)CrossRefGoogle Scholar
  16. 16.
    S. Bouchard, C.M. Gosselin, B. Moore, On the ability of a cable-driven robot to generate a prescribed set of wrenches, in Proceedings of the ASME International Design Engineering Technical Conferences, Mechanics and Robotics Conference, Citeseer, 2008Google Scholar
  17. 17.
    P. Chiacchio, Y. Bouffard-Vercelli, F. Pierrot, Force polytope and force ellipsoid for redundant manipulators. J. Robot. Syst. 14(8), 613–620 (1997)CrossRefMATHGoogle Scholar
  18. 18.
    R. Finotello, T. Grasso, G. Rossi, A. Terribile, Computation of kinetostatic performances of robot manipulators with polytopes, in Proceedings 1998 IEEE International Conference on Robotics and Automation, vol. 4, pp. 3241–3246, 1998Google Scholar
  19. 19.
    M. Gouttefarde, S. Krut, Characterization of parallel manipulator available wrench set facets. Adv. Robot Kinematics Motion Man Mach. 475–482 (2010)Google Scholar
  20. 20.
    A. Zibil, F. Firmani, S.B. Nokleby, R.P. Podhorodeski, An explicit method for determining the force-moment capabilities of redundantly actuated planar parallel manipulators. J. Mech. Des. 129, 1046 (2007)CrossRefGoogle Scholar
  21. 21.
    L.W. Tsai, Design of tendon-driven manipulators. J. Mech. Des. 117, 80 (1995)CrossRefGoogle Scholar
  22. 22.
    J.J. Lee, L.W. Tsai, The structural synthesis of tendon-driven manipulators having a pseudotriangular structure matrix. Int. J. Robot. Res. 10(3), 255 (1991)CrossRefGoogle Scholar
  23. 23.
    J.J. Lee, Tendon-driven manipulators: analysis, synthesis, and control. Ph.D Dissertation, University of Maryland, 1991Google Scholar
  24. 24.
    J.L. Fu, N.S. Pollard, On the importance of asymmetries in grasp quality metrics for tendon driven hands, in Proceedings of 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1068–1075, 2006Google Scholar
  25. 25.
    D.Z. Chen, J.C. Su, K.L. Yao, A decomposition approach for the kinematic synthesis of tendon-driven manipulators. J. Robot. Syst. 16(8), 433–443 (1999)CrossRefMATHGoogle Scholar
  26. 26.
    Y.J. Ou, L.W. Tsai, Kinematic synthesis of tendon-driven manipulators with isotropic transmission characteristics. J. Mech. Des. 115, 884 (1993)CrossRefGoogle Scholar
  27. 27.
    Y.J. Ou, L.W. Tsai, Isotropic design of tendon-driven manipulators. J. Mech. Des. 118(3), pp. 360–366 (1996)Google Scholar
  28. 28.
    J.B. Sheu, J.J. Huang, J.J. Lee, Kinematic synthesis of tendon-driven robotic manipulators using singular value decomposition. Robotica 28(01), 1–10 (2009)CrossRefGoogle Scholar
  29. 29.
    J. Angeles, On the Optimum Dimensioning of Robotic Manipulators (McGill University, Montreal, 2004)Google Scholar
  30. 30.
    M.M. Aref, H.D. Taghirad, S. Barissi, Optimal design of dexterous cable driven parallel manipulators. Int. J. Robot. Theory Appl. 2(4), 43–51 (2009)Google Scholar
  31. 31.
    D. Chablat, J. Angeles, On the kinetostatic optimization of revolute-coupled planar manipulators. Mech. Mach. Theory 37(4), 351–374 (2002)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    W.A. Khan, J. Angeles, The kinetostatic optimization of robotic manipulators: the inverse and the direct problems. J. Mech. Des. 128, 168 (2006)CrossRefGoogle Scholar
  33. 33.
    L. Kuxhaus, S.S. Roach, F.J. Valero-Cuevas, Quantifying deficits in the 3d force capabilities of a digit caused by selective paralysis: application to the thumb with simulated low ulnar nerve palsy. J. Biomech. 38(4), 725–736 (2005)CrossRefGoogle Scholar
  34. 34.
    F.J. Valero-Cuevas, F.E. Zajac, C.G. Burgar, Large index-fingertip forces are produced by subject-independent patterns of muscle excitation. J. Biomech. 31(8), 693–704 (1998)CrossRefGoogle Scholar
  35. 35.
    F.J. Valero-Cuevas, A mathematical approach to the mechanical capabilities of limbs and fingers. Prog. Mot. Control 619–633 (2005)Google Scholar
  36. 36.
    F.J. Valero-Cuevas, V.V. Anand, A. Saxena, H. Lipson, Beyond parameter estimation: extending biomechanical modeling by the explicit exploration of model topology. IEEE Trans. Biomed. Eng. 54, 1951–1964 (2007)CrossRefGoogle Scholar
  37. 37.
    J.M. Inouye F.J. Valero-Cuevas, Asymmetric routings with fewer tendons can offer both flexible endpoint stiffness control and high force-production capabilities in robotic fingers, in Proceedings of the Fourth IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, 2012Google Scholar
  38. 38.
    F.J. Valero-Cuevas, An integrative approach to the biomechanical function and neuromuscular control of the fingers. J. Biomech. 38, 673–684 (2005)CrossRefGoogle Scholar
  39. 39.
    J.J. Kutch, F.J. Valero-Cuevas, Muscle redundancy does not imply robustness to muscle dysfunction. J. Biomech. 44(7), 1264–1270 (2011)CrossRefGoogle Scholar
  40. 40.
    J.J. Kutch, F.J. Valero-Cuevas, Challenges and new approaches to proving the existence of muscle synergies of neural origin. PLoS Comput. Biol. 8(5), http://www.hubmed.org/display.cgi?uids=22570602. Accessed May 2012
  41. 41.
    C.B. Barber, D.P. Dobkin, H. Huhdanpaa, The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22(4), 469–483 (1996)CrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    K. Fukuda, A. Prodon, Double description method revisited. Comb. Comput. Sci. 1120, 91–111 (1996)Google Scholar
  43. 43.
    D. Avis, in Polytopes—combinatorics and computation ed. by G. Kalai, G. Ziegler. A Revised Implementation of the Reverse Search Vertex Enumeration Algorithm, vol. 29 (Birkhauser-Verlag, DMV Seminar Band 29, 2000), pp. 177–198Google Scholar
  44. 44.
    J. Butterfafl, M. Grebenstein, H. Liu, G. Hirzinger, Dlr-hand II: next generation of a dextrous robot hand, in Proceedings 2001 ICRA IEEE International Conference on Robotics and Automation, vol. 1 (IEEE, 2001), pp. 109–114Google Scholar
  45. 45.
    N.S. Pollard, R.C. Gilbert, Tendon arrangement and muscle force requirements for humanlike force capabilities in a robotic finger. Environment 17, 14 (2002)Google Scholar
  46. 46.
    G. Taguchi, S. Konishi, Orthogonal Arrays and Linear Graphs: Tools for Quality Engineering (American Supplier Institute, Allen Park, 1987)Google Scholar
  47. 47.
    J.M. Inouye, Bio-inspired tendon-driven systems: computational analysis, optimization, and hardware implementation. Ph.D. Dissertation, University of Southern California, 2012Google Scholar
  48. 48.
    J.M. Inouye, J.J. Kutch, F. Valero-Cuevas, Quantitative prediction of grasp impairment following peripheral neuropathies of the hand, in Proceedings of the 35th Annual Meeting of the American Society of Biomechanics, Long Beach, CA, 2011Google Scholar
  49. 49.
    F.J. Valero-Cuevas, J.D. Towles, V.R. Hentz, Quantification of fingertip force reduction in the forefinger following simulated paralysis of extensor and intrinsic muscles. J. Biomech. 33(12), 1601–1609 (2000)CrossRefGoogle Scholar
  50. 50.
    F.J. Valero-Cuevas, V.R. Hentz, Releasing the A3 pulley and leaving flexor superficialis intact increases pinch force following the zancolli lasso procedures to prevent claw deformity in the intrinsic palsied finger. J. Orthop. Res. 20(5), 902–909 (2002)CrossRefGoogle Scholar
  51. 51.
    J.M. Inouye, J.J. Kutch, F. Valero-Cuevas, A novel methodology to compare grasp quality: application to two dominant tendon-driven designs, in Proceedings of the 35nd Annual Meeting of the American Society of Biomechanics, Long Beach, CA, 2011Google Scholar
  52. 52.
    M. Grebenstein, M. Chalon, G. Hirzinger, R. Siegwart, Antagonistically driven finger design for the anthropomorphic dlr hand arm system, in Proceedings of IEEE-RAS International Conference on Humanoid Robots (HUMANOIDS), 2010Google Scholar
  53. 53.
    F.J. Valero-Cuevas, H. Hoffmann, M.U. Kurse, J.J. Kutch, E.A. Theodorou, Computational models for neuromuscular function. IEEE Rev. Biomed. Eng. 2, 110–135 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Joshua M. Inouye
    • 1
  • Jason J. Kutch
    • 2
  • Francisco J. Valero-Cuevas
    • 3
  1. 1.Department of Biomedical EngineeringUniversity of Southern CaliforniaCAUSA
  2. 2.Division of Biokinesiology and Physical TherapyUniversity of Southern CaliforniaCAUSA
  3. 3.Department of Biomedical Engineering and the Division of Biokinesiology and Physical TherapyUniversity of Southern CaliforniaCAUSA

Personalised recommendations