Design of Artificial Hands: A Review

  • Marco Controzzi
  • Christian Cipriani
  • Maria Chiara Carrozza
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 95)


The human hand is capable of performing complex and useful tasks using an effective integration of mechanisms, sensors, actuators and control functions, and at the same time is also a cognitive instrument, allowing humans to develop a superior brain by interacting with the surrounding environment. The idea of developing a human-like artificial hand has always intrigued mankind, and to replicate it is still one of the main challenges of robotics, requiring large efforts, based on multidisciplinary knowledge ranging from engineering to neuroscience. This chapter is aimed at providing an overview of past and present artificial hands, developed in the frameworks of research projects in prosthetics and humanoid robotics.


Artificial hands Robotics Design issues Grasp taxonomies Review 


  1. 1.
    Aristotle, De Anima, 350 BCE, III 8, 431 b 30 432a 3Google Scholar
  2. 2.
    R.H. Meier, D.J. Atkins, Functional restoration of adults and children with upper extremity amputation (Demos Medical Publishing, New York, 2004)Google Scholar
  3. 3.
    D.S. Childress, Artificial hand mechanisms, in Mechanisms Conference and International Symposium on Gearing and Transmissions, San Francisco California, Oct 1972Google Scholar
  4. 4.
    D.S. Childress, Historical aspects of power limb prostheses. Clin Prosthet Orthot 9(1), 2–13 (1985)Google Scholar
  5. 5.
    M.E. Rosheim, Robot evolution: The development of Anthrobotics (Wiley, New York, 1994)Google Scholar
  6. 6.
    B.B. Edin, G. Westling, R.S. Johansson, Independent control of human finger-tip forces at individual digits during precision lifting. J Physiol 450, 547–564 (1992)Google Scholar
  7. 7.
    B. Rosén, H.H. Ehrsson, C. Antfolk, C. Cipriani, F. Sebelius, G. Lundborg, Referral of sensation to an advanced humanoid robotic hand prosthesis. Scand. J. Plast. Reconstr. Surg. Hand Surg. 43, 260–266 (2009)CrossRefGoogle Scholar
  8. 8.
    H.H. Ehrsson, A. Fagergren, T. Jonsson, G. Westling, R.S. Johansson, H. Forssberg, Cortical activity in precision- versus power-grip tasks: An fMRI study. J. Neurophysiol. 83, 528–536 (2000)Google Scholar
  9. 9.
    H. Yokoi, R. Katoh, A. Hernandez Arieta, T. Miyamoto, K. Ikoma, T. Onishi, W. Yu, T. Arai, Cerebral reorganization by adaptable robot hand. Neurosc. Res. 58(supplement 1), 29 (2007)Google Scholar
  10. 10.
    J.L. Pons, R. Ceres, F. Pfeiffer, Multifingered dextrous robotics hand design and control: A review. Robotica 17(6), 661–674 (1999)CrossRefGoogle Scholar
  11. 11.
    A. Bicchi, Hands for dextrous manipulation and robust grasping: A difficult road towards simplicity. IEEE Trans Robot Autom 16(6), 652–662 (2010)CrossRefGoogle Scholar
  12. 12.
    L. Biagiotti, F. Lotti, C. Melchiorri, G. Vassura, How Far Is the Human Hand? A Review on Anthropomorphic Robotic End-Effectors (DEIS–DIEM, University of Bologna, Bologna, 2004)Google Scholar
  13. 13.
    J.R. Napier, The prehensile movements of the human hand. J. Bone Joint Surg. Br. 38-B(4), 902–913 (1956)Google Scholar
  14. 14.
    R.M. Murray, Z. Li, S.S. Sastry, A Mathematical Introduction to Robotic Manipulation (CRC Press, Boca Raton, 1994)MATHGoogle Scholar
  15. 15.
    M.A. Okamura, N. Smaby, M.R. Cutkosky, An overview of dexterous manipulation, in Proceedings of the 2000 IEEE International Conference on Robotics and Automation, Symposium on Dexterous Manipulation, 2000, pp. 255–262Google Scholar
  16. 16.
    M.T. Mason, J.K. Salisbury Jr, Robot Hands and the Mechanics of Manipulation (MIT Press, Cambridge, 1985)Google Scholar
  17. 17.
    C.L. Taylor, R.J. Schwarz, The Anatomy and Mechanics of the Human Hand. Artif Limbs 2, 22–35 (1995)Google Scholar
  18. 18.
    H.E. Griffiths, Treatment of the injured workman. Lancet 241(6250), 729–733 (1943)Google Scholar
  19. 19.
    E.D. McBride, Disability Evaluation (T.B. Lippincott Co., Philadelphia, 1942)Google Scholar
  20. 20.
    T. Iberall, G. Bingham, M.A. Arbib, Opposition space as a structuring concept for the analysis of skilled hand movements, in Experimental Brain Research Series 15—Generation and Modulation of Action Patterns, ed. by H. Heuer, C. Fromm (Springer, Berlin, 1985), pp. 158–173Google Scholar
  21. 21.
    M.A. Arbib, T. Iberall, D.M. Lyons, Coordinated control programs for movements of the hand, in In Hand Function and the Neocortex, ed. by A.W. Goodwin, I. Darian-Smith (Springer, Berlin, 1985), pp. 111–129CrossRefGoogle Scholar
  22. 22.
    M.R. Cutkosky, On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Trans Robotics and Automation 5(3), 269–279 (1989)CrossRefMathSciNetGoogle Scholar
  23. 23.
    M. Santello, M. Flanders, J.F. Soechting, Postural hand synergies for tool use. J Neurosci 18(23), 10105–10115 (1998)Google Scholar
  24. 24.
    C.Y. Brown, H. Asada, Inter-finger coordination and postural synergies in robot hand via mechanical implementation of principal components analysis, in Proceedings of the IEEE/RJS International Conference on Intelligent Robots and Systems, 2007, pp. 2877–2882Google Scholar
  25. 25.
    A. Tsoli, O.C. Jenkins, Robot grasping for prosthetic applications, in Proceedings of the International Symposium on Robotic Research, 2007Google Scholar
  26. 26.
    J. Rosell, R. Suárez, C. Rosales, J. A. García, A. Pérez, Motion planning for high DoF anthropomorphic hands, in Proceedings of IEEE International Conference on Robotics and Automation, 2009, pp. 4025–4030Google Scholar
  27. 27.
    M.T. Ciocarlie, P.K. Allen, Hand posture subspaces for dexterous robotic grasping. Int J Robot Res 28(7), 851–867 (2009)CrossRefGoogle Scholar
  28. 28.
    G. Matrone, C. Cipriani, M. C. Carrozza, G. Magenes, Real-time myoelectric control of a multi-fingered hand prosthesis using principal components analysis. J. NeuroEng, Rehabilit. 9(40) (2012)Google Scholar
  29. 29.
    I.A. Kapandji, The Physiology of the Joints—Upper Limb (Churchill Livingstone, Edinburgh, 1982)Google Scholar
  30. 30.
    L. Barbieri, M. Bergamasco, Nets of tendons and actuators: an anthropomorphic model for the actuation system of dexterous robot hands, in Proceedings of the IEEE International Conference on Advanced Robotics, 1991, pp. 357–362Google Scholar
  31. 31.
    T. Okada, Object-handling system for manual industry. IEEE Trans. Syst. Man Cybern. 9(2), 79–89 (1979)Google Scholar
  32. 32.
    J.K. Salisbury, J.J. Craig, Articulated hands: force control and kinematic issue. Int J Robot Res 1(1), 4–17 (1982)CrossRefGoogle Scholar
  33. 33.
    G. Wöhlke, A programming and simulation environment for the Karlsruhe dexterous hand. J Robot Auton Syst 9, 243–262 (1990)CrossRefGoogle Scholar
  34. 34.
    A. Namiki, Y. Imai, M. Ishikawa, M. Kaneko, Development of a high-speed multifingered hand system and its application to catching, in Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), vol. 3, 27–31 Oct 2003, pp. 2666–2671Google Scholar
  35. 35.
    A. Morecki, Z. Busko, H. Gasztold, K. Jaworek, Synthesis and control of the anthropomorphic two-handed manipulator, in Proceedings of the 10th International Symposium on Industrial Robots, 1980Google Scholar
  36. 36.
    G.A. Bekey, R. Tomovic, I. Zeljkovic, Control architecture for the Belgrade/USC hand. Dextrous robot hands (Springer, New York, 1990)Google Scholar
  37. 37.
    J. Butterfass, G. Hirzinger, S. Knoch, H. Liu, DLR’s multisensory articulated hand. Part I: Hard- and software architecture, in Proceedings of the 1998 IEEE International Conference on Robotics and Automation, Leuven, Belgium, May 1998Google Scholar
  38. 38.
    J. Butterfass, M. Grabenstein, H. Liu, G. Hirzinger, DLR-Hand II: next generation of dexterous robot hand, in Proceedings of the IEEE International Conference on Robotics and Automation, 2001, pp. 109–114Google Scholar
  39. 39.
    H. Kawasaki, T. Komatsu, K. Uchiyama, Dexterous anthropomorphic robot hand with distributed tactile sensor: Gifu hand II. IEEE/ASME Trans. Mechatron. 7(3), 296–303 (2002)Google Scholar
  40. 40.
    T. Mouri, H. Kawasaki, S. Ito, Unknown object grasping strategy imitating human grasping reflex for anthropomorphic robot hand. J Adv Mech Des Syst Manuf 1(1), 1–11 (2007)Google Scholar
  41. 41.
    W. Townsend, The Barrett hand grasper—programmable flexible part handling and assembly. Ind Robot 27(3), 181–188 (2000)CrossRefMathSciNetGoogle Scholar
  42. 42.
    J.L. Pons, E. Rocon, R. Ceres, D. Reynaerts, B. Saro, S. Levin, W. Van Moorleghem, The MANUS-HAND dextrous robotics upper limb prosthesis: mechanical and manipulation aspects. Auton Robot 16, 143–163 (2004)CrossRefGoogle Scholar
  43. 43.
    C.M. Light, P.H. Chappell, Development of a lightweight and adaptable multiple-axis hand prosthesis. Med Eng Phys 22, 679–684 (2000)CrossRefGoogle Scholar
  44. 44.
    L. Lin, H. Huang, NTU hand: a new design of dexterous hands. J. Mech. Des. 120(2), 282–293 (1998)CrossRefMathSciNetGoogle Scholar
  45. 45.
  46. 46.
    RSL Steeper BeBionic.
  47. 47.
    T. Yoshikawa, Manipulability of robotic mechanisms. Int. J. Robot. Res. 4, 3–9 (1985)Google Scholar
  48. 48.
    S.C. Jacobsen, E.K Iversen, D.F. Knutti, R.T. Johnson, K.B. Biggers, Design of the Utah/MIT dexterous hand, in Proceedings of the 2001 IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, 1986, pp. 1520–1532Google Scholar
  49. 49.
    R. Walker, Developments in dextrous hands for advanced robotic applications, in 10th International Symposium on Robotics and Applications (ISORA 2004), Seville, Spain, 28 June–1 July 2004Google Scholar
  50. 50.
    A. Caffaz, G. Cannata, The design and development of the DIST-hand dextrous gripper, in Proceedings of the IEEE International Conference on Robotics and Automation, 1998Google Scholar
  51. 51.
    Y. Nakano, M. Fujie, Y. Hosada, Hitachi’s robot hand. Robot. Age 6(7), 18–20 (1984)Google Scholar
  52. 52.
    A.D. Deshpande, Z. Xu, M.J.V. Weghe, B.H. Brown, J. Ko, L.Y. Chang, D.D. Wilkinson, S.M. Bidic, Y. Matsuoka, Mechanisms of the anatomically correct testbed hand. IEEE/ASME Trans. Mechatron. 1(18), 238–250 (2013)CrossRefGoogle Scholar
  53. 53.
    M. Grebenstein, P. Van Der Smagt, Antagonism for a highly anthropomorphic hand-arm system. Adv. Robot. 22, 39–55 (2008)CrossRefGoogle Scholar
  54. 54.
    M. Grebenstein, G. Hirzinger, R. Siegwart, Antagonistically driven finger design for the anthropomorphic DLR hand arm system, Humanoids, 2010Google Scholar
  55. 55.
    Otto Bock Healthcare, Italy, MN, 2011.
  56. 56.
    G. Puchhammer. Hand prosthesis and force transmission device, US Patent 2008/0319553 A1, 25 Dec 2008Google Scholar
  57. 57.
    T. Laliberte, L. Birglen, C.M. Gosselin, Underactuation in robotic grasping hands. Mach. Intell. Robot. Control 4(3), 1–11 (2002)Google Scholar
  58. 58.
    M. Rakic, An automatic hand prosthesis. Med. Electron. Biol. Eng. 2, 47–55 (1964)CrossRefGoogle Scholar
  59. 59.
    P.J. Kyberd, O.E. Holland, P.H. Chappel, S. Smith, R. Tregdigo, P.J. Bagwell, M. Snaith, Marcus: a two degree of freedom hand prosthesis with hierarchical grip control. IEEE Trans Rehabilit Eng 3(1), 70–76 (1995)CrossRefGoogle Scholar
  60. 60.
    P. Kyberd, C. Light, P.H. Chappell, J.M. Nightingale, D. Whatley, M. Evans, The design of anthropomorphic prosthetic hands: a study of the Southampton hand. Robotica 19, 593–600 (2001)CrossRefGoogle Scholar
  61. 61.
    N. Dechev, W.L. Cleghorn, S. Naumann, Multi finger, passive adaptive grasp prosthetic hand. Mech. Mach. Theory 36, 1157–1173 (2001)CrossRefMATHGoogle Scholar
  62. 62.
    H. Maekawa, K. Yokoi, K. Tanie, M. Kaneko, N. Kimura, N. Imamura, Development of a three-fingered robot hand with stiffness control capability. Mechatronics 2(5), 483–494 (1992)CrossRefGoogle Scholar
  63. 63.
    A.M. Dollar, R.D. Howe, The highly adaptive SDM hand: design and performance evaluation. Int. J. Robot. Res. 29, 595 (2010)CrossRefGoogle Scholar
  64. 64.
    N. Fukaya, S. Toyama, T. Asfour, R. Dillmann, Design of the TUAT/Karlsruhe humanoid hand, in Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2000Google Scholar
  65. 65.
    S. Hirose, Y. Umetami, The development of soft gripper for the versatile robot hand. Mech. Mach. Theory 13, 351–359 (1977)CrossRefGoogle Scholar
  66. 66.
    B. Massa, S. Roccella, M. C. Carrozza, P. Dario, Design and development of an underactuated prosthetic hand, in Proceedings of the ICRA’02. IEEE International Conference on Robotic Automation, 2002, vol. 4, pp. 3374–3379Google Scholar
  67. 67.
    M.C. Carrozza, C. Suppo, F. Sebastiani, B. Massa, F. Vecchi, R. Lazzarini, M.R. Cutkosky, P. Dario, The SPRING Hand: development of a self-adaptive prosthesis for restoring natural grasping. Auton. Robots 16(2), 125–141 (2004)CrossRefGoogle Scholar
  68. 68.
    M.C. Carrozza, G. Cappiello, S. Micera, B.B. Edin, L. Beccai, C. Cipriani, Design of a cybernetic hand for perception and action. Biol. Cybern. 95(6), 629–644 (2006)CrossRefMATHGoogle Scholar
  69. 69.
    C. Cipriani, M. Controzzi, M. C. Carrozza. The SmartHand transradial prosthesis. J. NeuroEng. Rehabil. 8, 29 (2011)Google Scholar
  70. 70.
    A. Schmitz, U. Pattacini, F. Nori, L. Natale, G. Metta, G. Sandini, Design, realization and sensorization of a dextrous hand: The iCub design choices, in 10th IEEE-RAS International Conference on Humanoid Robots, Nashville, Tennessee, 6–8 December 2010Google Scholar
  71. 71.
    Defense Advanced Research Project Agency (DARPA), DARPA initiates revolutionary prosthetics programs, Press release of 8 February 2006, Arlington, VA, USA, 2006Google Scholar
  72. 72.
    X. Zhe, E. Todorov, B. Dellon, Y. Matsuoka, Design and analysis of an artificial finger joint for anthropomorphic robotic hands, in 2011 IEEE International Conference on Robotics and Automation (ICRA), 9–13 May 2011, pp. 5096–5102Google Scholar
  73. 73.
    J.E. Huber, N.A. Fleck, M.F. Ashby, The selection of mechanical actuators based on performance indices. Proc. R. Soc. A 453, 2185–2205 (1997)CrossRefGoogle Scholar
  74. 74.
    F. Smith, S. Jacobsen, D. Potter, C. Davis, Miniature high performance servovalves, International Fluid Power Exposition and Technical Conference, Chicago, 24–26 March 1992Google Scholar
  75. 75.
    R.H. Gaylord, Fluid actuated motor system and stroking device, US Patent 2,844,126, 1958Google Scholar
  76. 76.
    V.L. Nickel, J. Perry, A.L. Garrett, Development of useful function in the severely paralyzed hand. J. Bone Joint Surg. 45-A, 933 (1963)Google Scholar
  77. 77.
    B. Tondu, P. Lopez, Modeling and control of McKibben artificial muscle robot actuators. Control Syst. Mag. 20(2), 15–38 (2000)CrossRefGoogle Scholar
  78. 78.
    S. Schulz, C. Pylatiuk, M. Reishl, J. Marti, R. Mikut, G. Bretthauer, A hydraulically driven multifunctional prosthetic hand. Robotica 23, 293–299 (2005)CrossRefGoogle Scholar
  79. 79.
    K. Fite, T. J. Withrow, K. W. Wait, M. Goldfarb, A gas-actuated anthropomorphic transhumeral prosthesis, in Proceedings of the 2007 IEEE International Conference on Robotics and Automation, 2007Google Scholar
  80. 80.
    K. DeLaurentis, C. Pfeiffer, C. Mavroidis, Development of a shape memory alloy actuated hand, in Proceedings of the 7th International Conference on New Actuators, 2000, pp. 281–284Google Scholar
  81. 81.
    D. Reynaerts, H. Van Brussel, A high performance actuators for robot hands. Journal de Physique IV 01(C4), 157–162 (1991)Google Scholar
  82. 82.
    M. Bergamasco, F. Salsedo, P. Dario, Shape memory alloy micromotors for direct-drive actuation of dexterous artificial hands. Sens. Actuators 17(1–2), 115–119 (1989)Google Scholar
  83. 83.
    M. Controzzi, C. Cipriani, M.C. Carrozza, Miniaturized non-back-drivable mechanism for robotic applications. Mech. Mach. Theory 45(10), 1395–1406 (2010)CrossRefMATHGoogle Scholar
  84. 84.
    R. Ham, T. Sugar, B. Vanderborght, K. Hollander, D. Lefeber, Compliant actuator designs. IEEE Robot. Autom. Mag. 16(3), 81–94 (2009)CrossRefGoogle Scholar
  85. 85.
    T. Wimbock, Ch. Ott, A. Albu-Schaffer, A. Kugi, G. Hirzinger, Impedance control for variable stiffness mechanisms with nonlinear joint coupling, in IEEE International Conference on Intelligent Robotic Systems, 2008, pp. 3796–3803Google Scholar
  86. 86.
    M. Grebenstein, A. Albu-Schaffer, T. Bahls, M. Chalon, O. Eiberger, W. Friedl, R. Gruber, S. Haddadin, U. Hagn, R. Haslinger, H. Hoppner, S. Jorg, M. Nickl, A. Nothhelfer, F. Petit, J. Reill, N. Seitz, T. Wimbock, S. Wolf, T. Wusthoff, G. Hirzinger, The DLR hand arm system, in 2011 IEEE International Conference on Robotics and Automation (ICRA), 9–13 May 2011, pp. 3175–3182Google Scholar
  87. 87.
    R. Tubiana. The Hand (W. B. Saunders Company, West Washington Square, 1981)Google Scholar
  88. 88.
    D. Chaigneau, M. Arsicault, J.-P. Gazeau, S. Zeghloul, LMS robotic hand grasp and manipulation planning (an isomorphic exoskeleton approach). Robotica 26, 177–188 (2008)CrossRefGoogle Scholar
  89. 89.
    C. S. Lovchik, M. A. Diftler, The Robonaut hand: a dexterous robot hand for space, in Proceedings of the 1999 IEEE International Conference on Robotics & Automation, Detroit, Michigan, May 1999Google Scholar
  90. 90.
    P.H. Chappell, Making sense of artificial hands. J. Med. Eng. Technol. 35(1), 1–18 (2011)CrossRefGoogle Scholar
  91. 91.
    R.S. Dahiya, G. Metta, M. Valle, G. Sandini, Tactile sensing—from humans to humanoids. IEEE Trans. Rob. 26(1), 1–20 (2010)CrossRefGoogle Scholar
  92. 92.
    R. Fearing, Some experiments with tactile sensing during grasping, in Proceedings of the 1987 IEEE International Conference on Robotics and Automation, March 1987, vol. 4, pp. 1637–1643Google Scholar
  93. 93.
    D. Johnston, P. Zhang, J. Hollerbach, S. Jacobsen, A full tactile sensing suite for dextrous robot hands and use in contact force control, in Proceedings of the 1996 IEEE International Conference on Robotics and Automation, Minneapolis, Minnesota, April 1996Google Scholar
  94. 94.
    L. Beccai, S. Roccella, A. Arena, F. Valvo, P. Valdastri, A. Menciassi, M.C. Carrozza, P. Dario, Design and fabrication of a hybrid silicon three-axial force sensor for biomechanical applications. Sens. Actuators, A 120, 370–382 (2005)CrossRefGoogle Scholar
  95. 95.
    C.M. Oddo, M. Controzzi, L. Beccai, C. Cipriani, M.C. Carrozza, Roughness encoding for discrimination of surfaces in artificial active touch. IEEE Trans. Rob. 27(3), 522–533 (2011)CrossRefGoogle Scholar
  96. 96.
    H. Kawasaki, T. Komatsu, K. Uchiyama, Dexterous anthropomorphic robot hand with distributed tactile sensor: Gifu hand II. IEEE/ASME Trans. Mechatron. 7(3), 296–303 (2002)Google Scholar
  97. 97.
    A. Persichetti, F. Vecchi, M. C. Carrozza, Optoelectronic-based flexible contact sensor for robot finger application, in 10th International Conference on Rehabilitation Robotics (ICORR 2007), 13–15 June 2007Google Scholar
  98. 98.
    A. Tura, C. Lamberti, A. Davalli, R. Sacchetti, Experimental development of a sensory control system for an upper limb myoelectric prosthesis with cosmetic covering. J. Rehabil. Res. Dev. 35, 14–26 (1998)Google Scholar
  99. 99.
    H. Liu, P. Meusel, J. Butterfass, G. Hirzinger, DLR’s multisensory articulated hand—Part II: The parallel torque/position control system, in Proceedings of the 1998 IEEE International Conference on Robotics & Automation, Leuven, Belgium, l May 1998Google Scholar
  100. 100.
    W.D. Callister Jr, Materials science and engineering: an introduction (Wiley, New York, 1997)Google Scholar
  101. 101.
    J. Won, J.K. DeLaurentis, C. Mavroidis, Fabrication of a robotic hand using rapid prototyping, in ASME Design Technical Conference, DECT00/MECH-14203, December 2000Google Scholar
  102. 102.
    S.A. Dalley, T.E. Wiste, T.J. Withrow, M. Goldfarb, Design of a multifunctional anthropomorphic prosthetic hand with extrinsic actuation. IEEE/ASME Trans. Mechatron. 14(6), 699–706 (2009)CrossRefGoogle Scholar
  103. 103.
    F. Lotti, P. Tiezzi, G. Vassura, A. Zucchelli. Mechanical structures for robotic hands based on the “compliant mechanism” concept, in 7th ESA Workshop on Advanced Space Technologies for Robotics and Automation (ASTRA 2002), Noordwijk, The Netherlands, 19–21 November 2002Google Scholar
  104. 104.
    R. Doshi, C. Yeh, M. LeBlanc, The design and development of a gloveless endoskeletal prosthetic hand. J. Rehabil. Res. Dev. 35(4), 388–395 (1998)Google Scholar
  105. 105.
    E. Ullmann, F. Cepolina, M. Zoppi, Upper limb prosthesis for developing countries, in Proceedings of the IEEE International Conference on Intelligent Manipulation and Grasping (IMG 04), Genova, Italy, 1–2 July 2004, ISBN 88 900 426-1-3Google Scholar
  106. 106.
    M.C. Carrozza, G. Cappiello, G. Stellin, F. Zaccone, F. Vecchi, S. Micera, P. Dario, A cosmetic prosthetic hand with tendon driven under-actuated mechanism and compliant joints: Ongoing research and preliminary results, in Proceedings of the 2005 IEEE International Conference on Robotics and Automation (ICRA 2005), 18–22 April 2005, pp. 2661–2666Google Scholar
  107. 107.
    J. Yang, E.P. Pitarch, K. Abdel-Malek, A. Patrick, L. Lindkvist, A multi-fingered hand prosthesis. Mech. Mach. Theory 39, 555–581 (2004)CrossRefMATHGoogle Scholar
  108. 108.
    K. B. Shimoga, A.A. Goldenberg, Soft materials for robotic fingers, in Proceedings of the 1992 IEEE International Conference on Robotic and Automation (ICRA), Nice, France, May 1992Google Scholar
  109. 109.
    F. Shao, T.H.C. Childs, B. Henson, Developing an artificial fingertip with human friction properties. Tribol. Int. 42, 1575–1581 (2009)CrossRefGoogle Scholar
  110. 110.
    P. Tiezzi, G. Vassura, Experimental analysis of soft fingertips with internal rigid core, in Proceedings of the 12th International Conference on Advanced Robotics (ICAR ‘05), 18–20 July 2005, pp. 109–114Google Scholar
  111. 111.
    C. Melchiorri, G. Vassura, Mechanical and control features of the UB hand version II, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 1992Google Scholar
  112. 112.
    F. Lotti, P. Tiezzi, G. Vassura, L. Biagiotti, C. Melchiorri, UBH 3: an anthropomorphic hand with simplified endo-skeletal structure and soft continuous fingerpads, in ICRA’04, IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, 26 April–1 May, 2004Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Marco Controzzi
    • 1
  • Christian Cipriani
    • 1
  • Maria Chiara Carrozza
    • 1
  1. 1.Scuola Superiore Sant’AnnaPisaItaly

Personalised recommendations