Skip to main content

Integrated Fault Diagnosis and Control: Principles and Design Strategies

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 266))

Abstract

As has already been mentioned, FTC systems are classified into two distinct classes [1]: passive and active. In passive FTC [24], controllers are designed to be robust against a set of predefined faults, therefore there is no need for fault diagnosis, but such a design usually degrades the overall performance. In contrast, active FTC schemes react to faults actively by reconfiguring control actions, and so the system stability and acceptable performance are maintained. To achieve that, the control system relies on FDI [58] as well as an accommodation technique [9]. Most of the existing works treat FDI and FTC problems separately. Unfortunately, perfect FDI and fault identification are impossible and hence there always is some inaccuracy related to this process. Thus, there is a need for integrated FDI and FTC schemes for both linear and non-linear systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.feedback-group.com/product/twin-rotor-mimo-6056

References

  1. Y. Zhang, J. Jiang, Bibliographical review on reconfigurable fault-tolerant control systems, IFAC Symposium Fault Detection Supervision and Safety of Technical Processes, SAFEPROCESS (Washington, D.C., USA, 2003), pp. 265–276

    Google Scholar 

  2. Y. Liang, D. Liaw, T. Lee, Reliable control of nonlinear systems. IEEE Trans. Autom. Control 45(4), 706–710 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. F. Liao, J. Wang, G. Yang, Reliable robust flight tracking control: an LMI approach. IEEE Trans. Control Syst. Technol. 10(1), 76–89 (2000)

    Article  Google Scholar 

  4. Z. Qu, C.M. Ihlefeld, J. Yufang, A. Saengdeejing, Robust fault-tolerant self-recovering control of nonlinear uncertain systems. Automatica 39(10), 1763–1771 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Korbicz, J. Kościelny, Z. Kowalczuk, W. Cholewa (eds.), Fault Diagnosis. Models, Artificial Intelligence, Applications (Springer, Berlin, 2004)

    MATH  Google Scholar 

  6. H. Li, Q. Zhao, Z. Yang, Reliability modeling of fault tolerant control systems. Int. J. Appl. Math. Comput. Sci. 17(4), 491–504 (2007)

    MathSciNet  MATH  Google Scholar 

  7. M. Witczak, Advances in model-based fault diagnosis with evolutionary algorithms and neural networks. Int. J. Appl. Math. Comput. Sci. 16(1), 85–99 (2006)

    MathSciNet  Google Scholar 

  8. M. Witczak, Modelling and Estimation Strategies for Fault Diagnosis of Non-linear Systems (Springer, Berlin, 2007)

    MATH  Google Scholar 

  9. M. Blanke, M. Kinnaert, J. Lunze, M. Staroswiecki, Diagnosis and Fault-Tolerant Control (Springer, New York, 2003)

    Book  MATH  Google Scholar 

  10. R. Iserman, Fault Diagnosis Applications: Model Based Condition Monitoring, Actuators, Drives, Machinery, Plants, Sensors, and Fault-tolerant Systems (Springer, Berlin, 2011)

    Book  Google Scholar 

  11. M. Mahmoud, J. Jiang, Y. Zhang, Active Fault Tolerant Control Systems: Stochastic Analysis and Synthesis (Springer, Berlin, 2003)

    Google Scholar 

  12. H. Noura, D. Theilliol, J. Ponsart, A. Chamseddine, Fault-tolerant Control Systems: Design and Practical Applications (Springer, Berlin, 2003)

    Google Scholar 

  13. G. Ducard, Fault-tolerant Flight Control and Guidance Systems: Practical Methods for Small Unmanned Aerial Vehicles (Springer, Berlin, 2009)

    Book  Google Scholar 

  14. J. Maciejowski, Predictive Control with Constraints (Prentice Hall, New Jersey, 2002)

    Google Scholar 

  15. S. Kanev, M. Verhaegen, Reconfigurable robust fault-tolerant control and state estimation, in 15th IFAC World Congress (Barcelona, Spain, 2002), pp. 1–6

    Google Scholar 

  16. J. Lunze, T. Steffen, Control reconfiguration after actuator failures using disturbance decoupling methods. IEEE Trans. Autom. Control 51(10), 1590–1601 (2006)

    Article  MathSciNet  Google Scholar 

  17. J.H. Richter, S. Weiland, W.P.M.H. Heemels, J. Lunze, Decoupling-based reconfigurable control of linear systems after actuator faults, in 10th European Control Conference, ECC (Budapest, Hungary, 2009), pp. 2512–2517

    Google Scholar 

  18. J.H. Richter and J. Lunze. H-infinity-based virtual actuator synthesis for optimal trajectory recovery, in 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, SAFEPROCESS (Barcelona, Spain, 2009), pp. 1587–1592

    Google Scholar 

  19. L. Dziekan, M. Witczak, J. Korbicz, Active fault-tolerant control design for Takagi-Sugeno fuzzy systems. Bull. Pol. Acad. Sci.: Tech. Sci. 59(1), 93–102 (2011)

    Google Scholar 

  20. S. de Oca, V. Puig, M. Witczak, L. Dziekan, Fault-tolerant control strategy for actuator faults using LPV techniques: Application to a two degree of freedom helicopter. Int. J. Appl. Math. Comput. Sci. 22(1), 161–171 (2012)

    MathSciNet  MATH  Google Scholar 

  21. M. Witczak, J. Korbicz, A fault-tolerant control strategy for lipschitz non-linear discrete-time systems, in 18th Mediterranean Conference on Control and Automation (Marrakech, Maroko, 2010), pp. 1079–1084

    Google Scholar 

  22. M. Witczak, J. Korbicz, A fault-tolerant control scheme for non-linear discrete-time systems, in Methods and Models in Automation and Robotics-MMAR 2010: Proceedings of the 15th International Conference (Miedzyzdroje, Polska, 2010), pp. 302–307

    Google Scholar 

  23. M. Witczak, V. Puig, S. de Oca, A fault-tolerant control strategy for non-linear discrete-time systems: application to the twin-rotor system. Int. J. Control. 86(10), 1788–1799 (2013)

    Google Scholar 

  24. M. Witczak, L. Dziekan, V. Puig, J. Korbicz, An integrated design strategy for fault identification and fault-tolerant control for Takagi-Sugeno fuzzy systems, in Workshop on Advanced Control and Diagnosis, ACD (Grenoble, France, 2007), pp. 1–6

    Google Scholar 

  25. B. Jiang, F.N. Chowdhury, Fault estimation and accommodation for linear MIMO discrete-time systems. IEEE Trans. Control Syst. Technol. 13(1), 493–499 (2005)

    Article  Google Scholar 

  26. S. Hui, S.H. Zak, Observer design for systems with unknown input. Int. J. Appl. Math. Comput. Sci. 15(4), 431–446 (2005)

    MathSciNet  MATH  Google Scholar 

  27. D. Nesic, A. Loria, On uniform asymptotic stability of time-varying parameterized discrete-time cascades. IEEE Trans. Autom. Control 49(6), 875–887 (2004)

    Article  MathSciNet  Google Scholar 

  28. T.C. Lee, Z.P. Jiang, On uniform asymptotic stability of time-varying parameterized discrete-time cascades. IEEE Trans. Autom. Control 51(10), 1644–1660 (2006)

    Article  MathSciNet  Google Scholar 

  29. A. Zemouche, M. Boutayeb, Observer design for \(\text{ Lipschitz }\) non-linear systems: the discrete time case. IEEE Trans. Circ. Syst. - II:Express Briefs 53(8), 777–781 (2006)

    Article  Google Scholar 

  30. D. Simon, T.L. Chia, Kalman filtering with state equality constraints. IEEE Trans. Aerosp. Electron. Syst. 38(1), 128–136 (2002)

    Article  Google Scholar 

  31. A. Rahideh, M.H. Shaheed, Mathematical dynamic modelling of a twin-rotor multiple input-multiple output system, in Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 227, 89–101 (2007)

    Google Scholar 

  32. H. Li, M. Fu, A linear matrix inequality approach to robust \(h_{\infty }\) filtering. IEEE Trans. Signal Process. 45(9), 2338–2350 (1997)

    Article  MathSciNet  Google Scholar 

  33. D.M. Stipanovic, D.D. Siljak, Robust stability and stabilization of discrete-time non-linear: the lmi approach. Int. J. Control 74(5), 873–879 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Witczak .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Witczak, M. (2014). Integrated Fault Diagnosis and Control: Principles and Design Strategies. In: Fault Diagnosis and Fault-Tolerant Control Strategies for Non-Linear Systems. Lecture Notes in Electrical Engineering, vol 266. Springer, Cham. https://doi.org/10.1007/978-3-319-03014-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03014-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03013-5

  • Online ISBN: 978-3-319-03014-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics