Advertisement

In-Situ Growth of CdS Nanorods in PTB7 by Solvothermal Process for Hybrid Organic Inorganic Solar Cell applications

  • Ramil K. Bhardwaj
  • Vishal Bharti
  • Jitender Gaur
  • Abhishek Sharma
  • Annu Sonania
  • Dibyajyoti Mohanty
  • Shilpa Jain
  • Gauri D. Sharma
  • Neeraj Chaudhari
  • Suresh Chand
  • Kamalika Banerjee
Part of the Environmental Science and Engineering book series (ESE)

Abstract

We demonstrate a high yielding, green approach using solvothermal, in situ growth of CdS nanorods (NRs) in a low band gap polymer, poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno[3,4-b]thiophenediyl]] (PTB7). The use of chloroaniline dithiocarbamate and chloroaniline as ligands to functionalize the Cd (II) ions provides a new path for solubilization of Cd (II) complex in the chlorobenzene solvent. It removes use of volatile and hazardous chemicals such as pyridine as ligand which are conventionally used to enhance solubility of such complexes. It is the first example of solvothermal process used for in situ growth of CdS NRs in a polymer matrix. This nanocomposite is used to fabricate hybrid-organic–inorganic-solar cells (HOISC) as donor–acceptor combination in the bulk hetrojunction (BHJ) geometry. The incorporation of CdS NRs shows significant decrease in the band gap of PTB7 from 1.71 eV to 1.59 eV and the photoluminescence (PL) studies show significant quenching in the PL of PTB7 by the addition of CdS NRs. This suggests that the PTB7:CdS NRs is a potential nanocomposite for the bulk heterojunction active layer in the HOISCs. The HOISCs fabricated using the PTB7:CdS as donor–acceptor combination give power conversion efficiency of the order of 1.16 %. This work has implication in the development of green economical and efficient HOISC by using highly controlled synthetic process.

Keywords Nanoparticles Photovoltaics Luminescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors thank the director, NPL, for his kind support in this R & D work. One of the authors (RKB) thanks Vice Chancellor and Director, IGNOU, Delhi. Authors are also thankful to DST, Govt. of India, for providing financial support under the India-UK joint initiative project entitled “Advancing the efficiency and production potential of excitonic solar cells (APEX)”.

References

  1. 1.
    B. Lebeau and P. Innocenzi, Chem. Soc. Rev., 2011, 40, 886-906.CrossRefGoogle Scholar
  2. 2.
    H. Dong, H. Zhu, Q. Meng, X. Gong and W. Hu, Chem. Soc. Rev., 2012, 41, 1754-808.CrossRefGoogle Scholar
  3. 3.
    R. K. Bhardwaj, H. S. Kushwaha, J. Gaur, T. Upreti, V. Bharti, V. Gupta, N. Chaudhary, G. D. Sharma, K. Banerjee and S. Chand, Mater. Lett., 2012, 89, 195-197.Google Scholar
  4. 4.
    W. U. Huynh, J. J. Dittmer and A. P. Alivisatos, Science, 2002, 295, 2425-2457.CrossRefGoogle Scholar
  5. 5.
    S. Dayal, N. Kopidakis, D. C. Olson, D. S. Ginley and G. Rumbles, Nano Lett., 2010, 10, 239-242.CrossRefGoogle Scholar
  6. 6.
    W. U. Huynh, X. G. Peng and A. P. Alivisatos, Adv. Mater., 1999, 11, 923-927.CrossRefGoogle Scholar
  7. 7.
    B. Q. Sun, H. J. Snaith, A. S. Dhoot, S. Westenhoff and N. C. Greenham, J. Appl. Phys, 2005, 97, 14914 (1-6).Google Scholar
  8. 8.
    Y. Zhou, Y. C. Li, H. Z. Zhong, J. H. Hou, Y. Q. Ding, C. H. Yang and Y. F. Li, Nanotechnology, 2006, 17, 4041-4047.CrossRefGoogle Scholar
  9. 9.
    L. Wang, Y. S. Liu, X. Jiang, D. H. Qin and Y. Cao, J. Phys. Chem. C, 2007, 111, 9538-9542.CrossRefGoogle Scholar
  10. 10.
    C. Kaito, Y. Saito and K. Fujita, Jpn. J. Appl. Phys., 1987, 26, L1973-1975.CrossRefGoogle Scholar
  11. 11.
    D. R. Baker and P. V. Kama, Adv. Funct. Mater., 2009, 19, 805-811.CrossRefGoogle Scholar
  12. 12.
    M. Wright and A. Uddin, Sol. Cells, 2012, 107, 87-111.Google Scholar
  13. 13.
    H. C. Leventis, S. P. King, A. Sudlow, M. S. Hill, K. C. Molloy and S. A. Haque, Nano Lett., 2010, 10, 1253-1258.CrossRefGoogle Scholar
  14. 14.
    S. Dowland, T. Lutz, A. Ward, S. P. King, A. Sudlow, M. S. Hill, K. C. Molloy and S. A. Haque, Adv. Mater., 2011, 23, 2739-2744.CrossRefGoogle Scholar
  15. 15.
    K. D. Karlin, John Wiley & Sons, Inc., Hoboken, New Jersey, 2005, Volume 53.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ramil K. Bhardwaj
    • 1
    • 2
  • Vishal Bharti
    • 1
  • Jitender Gaur
    • 1
  • Abhishek Sharma
    • 1
  • Annu Sonania
    • 1
  • Dibyajyoti Mohanty
    • 1
  • Shilpa Jain
    • 1
  • Gauri D. Sharma
    • 1
  • Neeraj Chaudhari
    • 1
  • Suresh Chand
    • 1
  • Kamalika Banerjee
    • 2
  1. 1.CSIR-National Physical LaboratoryNew DelhiIndia
  2. 2.School of ScienceIndira Gandhi National Open UniversityNew DelhiIndia

Personalised recommendations