Resistive Switching in MIM Capacitors Using Porous Anodic Alumina

  • K. MukherjeeEmail author
  • S. Upreti
  • A. Bag
  • S. Mallik
  • M. Palit
  • S. Chattopadhyay
  • C. K. Maiti
Part of the Environmental Science and Engineering book series (ESE)


Bipolar resistive switching phenomena have been observed in TiN/AAO/TiN structures. Porous anodic aluminium oxide (AAO) membranes with pore diameters ranging from 15 to 50 nm were prepared by two step anodization in oxalic acid under specific reaction condition on TiN layer. The nanochannel arrays of AAO membranes were characterized with field-emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). AAO membrane was sandwiched between two conducting TiN layers to fabricate MIM structures. Good stability in resistive switching behaviour up to several cycles and a ~ 2x resistance ratio has been achieved.


AAO Porous anodic alumina Resistive switching 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. N. Kozicki, C. Gopalan, M. Balakrishnan, M. Park, and M. Mitkova, in Proc. IEEE Non-Volatile Memory Technology Symposium, 2004, 10 (2004). [doi: 10.1109/NVMT.2004.1380792]
  2. 2.
    I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D.-S. Suh, J. C. Park, S. O. Park, H. S. Kim, I. K. Yoo, U.-In. Chung, and J. T. Moon, in Proc. IEEE International Electron Devices Meeting, 2004. IEDM Technical Digest, 587 (2004). [doi: 10.1109/IEDM.2004.1419228]
  3. 3.
    Y. Watanabe, J. G. Bednorz, A. Bietsch, Ch. Gerber, D. Widmer, and A. Beck, Appl. Phys. Lett., 78, 3738 (2001). [doi: 10.1063/1.1377617]CrossRefGoogle Scholar
  4. 4.
    W. L. Kwan, R. J. Tseng, W. Wu, Q. Pei, Y. Yang, in Proc. IEEE International Electron Devices Meeting, 2007. IEDM Technical Digest, 237 (2007). [doi: 10.1109/IEDM.2007.4418911]
  5. 5.
    H. Kanaya, K. Tomioka, T. Matsushita, M. Omura, T. Ozaki et al., in Proc. Symposium on VLSI Technology, 2004. Digest of Technical Papers. 2004, 150 (2004). [doi: 10.1109/VLSIT.2004.1345446]
  6. 6.
    S. Lai, in Proc. IEEE International Electron Devices Meeting, 2003. IEDM ‘03 Technical Digest, 10.1.1 (2003). [doi: 10.1109/IEDM.2003.1269271]
  7. 7.
    R. Sezi, A. Walter, R. Engl, A. Maltenberger, J. Schumann, M. Kund, and C. Dehm, in Proc. IEEE International Electron Devices Meeting, 2003. IEDM ‘03 Technical Digest, 10.2.1 (2003). [doi: 10.1109/IEDM.2003.1269272]
  8. 8.
    A. R. Sitaram, D. W. Abraham, C. Alof, D. Braun, S. Brown et al., in Proc. Symposium on VLSI Technology, 2003. Digest of Technical Papers. 2003, 15 (2003). [doi: 10.1109/VLSIT.2003.1221063]
  9. 9.
    L. O. Chua, IEEE Trans. Circuit Theory, 18, 507 (1971). [doi:  10.1109/TCT.1971.1083337]CrossRefGoogle Scholar
  10. 10.
    S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, Nano Lett., 10, 1297 (2010). [doi: 10.1021/nl904092h]CrossRefGoogle Scholar
  11. 11.
    L. O. Chua and S. M. Kang, Proceedings of the IEEE, 64, 209 (1976). [doi: 10.1109/PROC.1976.10092]CrossRefGoogle Scholar
  12. 12.
    A. Makarov, V. Sverdlov, and S. Selberherr, Microelectron. Reliab., 52, 628 (2012). [doi: 10.1016/j.microrel.2011.10.020]CrossRefGoogle Scholar
  13. 13.
    H. Shima, F. Takano, H. Muramatsu, H. Akinaga, Y. Tamai, I. H. Inque, and H. Takagi, Appl. Phys. Lett., 93, 113504 (2008). [doi:  10.1063/1.2982426]CrossRefGoogle Scholar
  14. 14.
    E. Gomar-Nadal, J. Puigmartı´-Luis, and D. B. Amabilino, Chem. Soc. Rev., 37, 490 (2008). [doi: 10.1039/B703825A]CrossRefGoogle Scholar
  15. 15.
    J. J. Gooding, F. Mearns, W. Yang, and J. Liu, Electroanalysis, 15, 81 (2003). [doi: 10.1002/elan.200390017]CrossRefGoogle Scholar
  16. 16.
    X. Zhao, U.-J. Lee, S.-K. Seo, and K.-H. Lee, Mat. Sci. Eng.: C, 29, 1156 (2009). [doi: 10.1016/j.msec.2008.09.042]CrossRefGoogle Scholar
  17. 17.
    G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, Nano Lett., 6, 215 (2006). [doi: 10.1021/nl052099j]CrossRefGoogle Scholar
  18. 18.
    A. K. Kasi, J. K. Kasi, N. Afzulpurkar, E. Bohez, A. Tuantranont, and B. Mahaisavariya, 3rd International Conference on Communications and Electronics (ICCE), 2010, 98 (2010). [doi:  10.1109/ICCE.2010.5670689]
  19. 19.
    A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, J. Appl. Phys., 84, 6023 (1998). [doi: 10.1063/1.368911]CrossRefGoogle Scholar
  20. 20.
    K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn, and U. Gösele, Nano Lett., 2, 677 (2002). [doi: 10.1021/nl025537k]CrossRefGoogle Scholar
  21. 21.
    H. Masuda, and K.Fukuda, Science, 268, 1466 (1995). [doi:  10.1126/science.268.5216.1466]CrossRefGoogle Scholar
  22. 22.
    S. Otsuka, T. Shimizu, S. Shingubara, N. Iwata, T. Watanabe, Y. Takano, and K. Takase, ECS Trans., 50, 49 (2013). [doi:  10.1149/05034.0049ecst]CrossRefGoogle Scholar
  23. 23.
    J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, and R. S. Williams, Nat. Nanotechnol., 3, 429 (2008). [doi: 10.1038/nnano.2008.160]CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • K. Mukherjee
    • 1
    Email author
  • S. Upreti
    • 1
  • A. Bag
    • 1
  • S. Mallik
    • 1
  • M. Palit
    • 2
  • S. Chattopadhyay
    • 2
    • 3
  • C. K. Maiti
    • 1
  1. 1.VLSI Eng. Lab., Department of Electronics and ECEIndian Institute of TechnologyKharagpurIndia
  2. 2.Centre for Research in NanoScience and NanotechnologyUniversity of CalcuttaKolkataIndia
  3. 3.Department of Electronic ScienceUniversity of CalcuttaKolkataIndia

Personalised recommendations