Threshold Voltage Modeling of Short-Channel DG MOSFETs with Non-Uniform Doping in the Vertical Direction

  • Sanjay Kumar
  • Ekta Goel
  • Gopal Rawat
  • Kunal Singh
  • Mirgender Kumar
  • Sarvesh Dubey
  • S. Jit
Conference paper
Part of the Environmental Science and Engineering book series (ESE)


Two-dimensional (2D) modeling of threshold voltage of short-channel double-gate (DG) metal-oxide-semiconductor field-effect transistors (MOSFETs) with a vertical Gaussian-like doping profile is proposed in this paper. The parabolic approximation method has been used to solve the 2D Poisson’s equation to obtain the channel potential function of the device. The minimum surface potential thus obtained, has been used to model the threshold voltage of the device. Threshold voltage variations against channel length for different device parameters have been demonstrated. The validity of proposed model is shown by comparing the results with the numerical simulation data obtained by using the commercially available ATLASTM, a 2D device simulator from SILVACO.


Double-gate MOSFETs Gaussian-like doping Parabolic-approximation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Balestra, S. Cristoloveanu, M. Benachir, J. Brini, and T. Eleva, IEEE Electron Device Lett, 8, 410 (1987).CrossRefGoogle Scholar
  2. 2.
    K.Suzuki,Y.Tanaka, H.Horie,Y.Arimoto, and T. Itoh, Solid-State Electron., 37, pp. 327-332, (1994).Google Scholar
  3. 3.
    D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur, and W. Hon-Sum Philip, Proc. IEEE, 89, 259 (2001).CrossRefGoogle Scholar
  4. 4.
    H. Lu, W.-Y. Lu, and Y. Taur, Semicond. Sci. Technol. 23, 015006 (2008).Google Scholar
  5. 5.
    K. Kim, J.G. Fossum, and C.-T. Chuang, Int. J. Electron, 91, 139 (2004).Google Scholar
  6. 6.
    Q. Chen, E. M. Harrell, II, and J. D. Meindl, IEEE Trans. Electron Devices, 50, 1631 (2003).CrossRefGoogle Scholar
  7. 7.
    K. Suzuki, T. Tanaka, Y. Tosaka, H. Horie, and Y. Arimoto, IEEE Trans. Electron Devices, 40, 2326 (1993).CrossRefGoogle Scholar
  8. 8.
    X. Liang and Y. Taur, IEEE Trans. Electron Devices, 51, 1385 (2004).CrossRefGoogle Scholar
  9. 9.
    B. Agrawal, Comparative Scaling Opportunities of MOSFET Structures of Gigascale Integration (GSI), Ph.D. thesis, Rensselare Polytechnic Institute, (1994).Google Scholar
  10. 10.
    D. Munteanu, J. L. Autran, S. Harrison, K. Nehari, O. Tintori, and T.Skotnicki, Mol. Simul. 31, 831 (2005).Google Scholar
  11. 11.
    K. Suzuki, Y. Tosaka, and T. Sugii, IEEE Trans. Electron Devices, 43, 1166, (1996).CrossRefGoogle Scholar
  12. 12.
    K. Suzuki, Y. Kataoka, S. Nagayama, C. W. Magee, T Buyuklimanli,and T. Nagayama, IEEE Trans. Electron Devices, 54, 262 (2007).CrossRefGoogle Scholar
  13. 13.
    G. Zhang, Z. Shao, and K. Zhou, IEEE Trans. Electron Devices, 55, 803 (2008).CrossRefGoogle Scholar
  14. 14.
    A. Dasgupta and S. K. Lahiri, IEEE Trans. Electron Devices, 35, 390 (1988).CrossRefGoogle Scholar
  15. 15.
    K. K. Young, IEEE Trans. Electron Devices 36, pp. 399-402, (1989).CrossRefGoogle Scholar
  16. 16.
    ATLAS: Silvaco International (2008).Google Scholar
  17. 17.
    P. K. Tiwari and S. Jit, J. nanoelectron. Optoelectron, 3, pp.576-583, (2011).Google Scholar
  18. 18.
    Sarvesh Dubey, Pramod Kumar Tiwari,and S.Jit, J. Appl. Phys, 108, 034518 (2010).Google Scholar
  19. 19.
    S. Bhattacherjee and A. Biswas, Semicond. Sci. Technol, 23, 015010 (2008).Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sanjay Kumar
    • 1
  • Ekta Goel
    • 1
  • Gopal Rawat
    • 1
  • Kunal Singh
    • 1
  • Mirgender Kumar
    • 1
  • Sarvesh Dubey
    • 2
  • S. Jit
    • 1
  1. 1.Department of Electronics EngineeringIndian Institute of Technology (BHU)VaranasiIndia
  2. 2.Department of Electronics & Communication EngineeringShri Ramswaroop Memorial UniversityLucknowIndia

Personalised recommendations