Fabrication of n-ZnO/p-GaAs Heterojunction and Prediction of Its Luminescence Based on Photoluminescence Study

  • Nripendra N. Halder
  • Sanjay Kumar Jana
  • Pranab Biswas
  • D. Biswas
  • P. Banerji
Conference paper
Part of the Environmental Science and Engineering book series (ESE)


Self-compensation arising out of non-stoichiometry makes ZnO as-grown n-type. Nonavailability of stable p-type doping with required carrier concentration limits the formation of homojunction of ZnO. Fabrication of semiconductor heterojunction is thus an alternative approach in device fabrication. In the present study n-ZnO has been grown on p-GaAs substrates using MOCVD technique. The colour of the light which is supposed to be emitted from the said heterojunction has been predicted to be purplish red from the room temperature photoluminescence study. The corresponding colour temperature is found to be less than 1,000 K. Efforts have been made to explain the prediction on the basis of band diagram.


Semiconductor heterostructure Photoluminescence Spectral response Color temperature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



NNH and SKJ thankfully acknowledge the financial help from the MEP Project (Department of Science and Technology, New Delhi, Sanction No. 100/IFD/196/2010-11, dated: 03/06/10). The authors are thankful to Mr. P. Chakraborty and Dr. S. Kundu for their technical help in the growth and analysis, respectively.


  1. 1.
    A. Janotti and C. G. V. Walle, Rep. Prog. Phys., 72, 126501(2009).CrossRefGoogle Scholar
  2. 2.
    S. Yamauchi, H. Handa, A. Nagayama and T. Hariu, Thin Solid Films, 345, 12 (1999).CrossRefGoogle Scholar
  3. 3.
    J.-J. Chen, F. Ren, Y. Li, D. P. Norton, S. J. Pearton, A. Osinsky, J. W. Dong, P. P. Chow and J.F. Weaver, Appl. Phys. Lett., 87, 192106 (2005).CrossRefGoogle Scholar
  4. 4.
    A. Janotti and C.G.V. Walle, J. Cryst. Growth, 287, 58 (2006).Google Scholar
  5. 5.
    A. Janotti and C.G V. Walle, Phys. Rev. B, 76, 165202 (2007).Google Scholar
  6. 6.
    S.T. Tan, J. Zhao, S. Iwan, X.W. Sun, X. Tang, J. Ye, M. Bosman, L. Tang, G. Lo and K.L. Teo, IEEE Trans. Electron Devices, 57, 129 (2010).CrossRefGoogle Scholar
  7. 7.
    X. Li, B. Zhang, H. Zhu, X. Dong, X. Xia, Y. Cui, Y. Ma and G. Du, J. Phys. D: Appl. Phys., 41, 035101(2008).CrossRefGoogle Scholar
  8. 8.
    X. Dong, H. C. Zhu, B. L. Zhang, X. P. Li and G. T. Du, Semicond. Sci. Technol., 22, 1111 (2007).CrossRefGoogle Scholar
  9. 9.
    Y. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukichev and D. M. Bagnall, Appl. Phys. Lett., 83, 4719 (2003).CrossRefGoogle Scholar
  10. 10.
    S. Ye, D. C. Yu, X. Y. Huang, Z. M. Yang, and Q. Y. Zhang, Appl. Phys. Lett., 108,083528 (2010).Google Scholar
  11. 11.
    S. Majumdar, S. Chattopadhyay and P. Banerji, Appl. Surf. Sci., 255, 6141 (2009).Google Scholar
  12. 12.
    J. Sing, Semiconductor Devices: Basic Principles, (John Wiley & Sons, Asia, 2007).Google Scholar
  13. 13.
    K. N. Plataniotis and A. N. Venetsanopoulos, Color image processing and applications, (Springer, Germany, 2000).CrossRefGoogle Scholar
  14. 14.
    A. S. Gouveia-Neto, A. F. da Silva, L. A. Bueno and E. B. da Costa, J. Lumin., 132, 299 (2012).Google Scholar
  15. 15.
    S. Chirakkara and S.B. Krupanidhi, Phys. Status Solidi RRL. 6, 34 (2012).Google Scholar
  16. 16.
    K. L. Kelly, J. Opt. Soc. Am. A. 53, 999 (1963).CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Nripendra N. Halder
    • 1
  • Sanjay Kumar Jana
    • 1
  • Pranab Biswas
    • 2
  • D. Biswas
    • 3
  • P. Banerji
    • 2
  1. 1.Advanced Technology Development CentreIndian Institute of TechnologyKharagpurIndia
  2. 2.Materials Science CentreIndian Institute of TechnologyKharagpurIndia
  3. 3.Department of Electronics and Electrical Communication EngineeringIndian Institute of TechnologyKharagpurIndia

Personalised recommendations