Electrical Characterization of Interface States in In/p-Si Schottky Diode From I–V Characteristics

Part of the Environmental Science and Engineering book series (ESE)

Abstract

Interfaces state density of In/p-Si Schottky diode has been determined using experimental non ideal forward bias current –voltage (I–V) characteristics. The diode showed non ideal I–V behavior with an ideality factor of 1.91 and was thought effects of interfacial oxide layer. Considering that the interface states localized at the interfacial layer-semiconductor interface are in equilibrium with the semiconductor, the energy distribution of the interface states was exactly determined from the forward bias I–V characteristics by taking account voltage dependence barrier height. The I–V characteristics were used for determining the voltage dependence barrier height. Although the change in barrier height with applied bias is small, it is important for exactly determining the shape of the interface state density distribution curve.

Keywords

Interface states Schottky diode Current–Voltage characteristics and interfacial oxide layer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E H Rhoderick and R.H. Williams “Metal-Semiconductor contacts” Clarandon press, Oxford(1980).Google Scholar
  2. 2.
    S M Sze “Physics of Semiconductor Devices” 2nd ed. New York: John Wiley & Sons.(1981).Google Scholar
  3. 3.
    A J Mathai, C K Sumesh and B P Modi Materials Sciences and Application 2, (2011) 1000.CrossRefGoogle Scholar
  4. 4.
    J Bardeen, Phys. Rev., 71 (1947) 717.CrossRefGoogle Scholar
  5. 5.
    M Biber, Physica B 325 (2003) 13.Google Scholar
  6. 6.
    B L Sharma (Ed.), “Metal –Semiconductor Schottky junctions and their Application” Press New York (1984).Google Scholar
  7. 7.
    Fahertinn, yakaphanaloglu, Synthetic metals, 158 (2008) 108.Google Scholar
  8. 8.
    M E Aydin F Yaka phanogluand T. Kili coglu, Synthettic metals, 157 (2007) 1080.Google Scholar
  9. 9.
    Mustfa okutan, engin basaran and Fahertin Applied Surface Science, 252 (2005) 1966.Google Scholar
  10. 10.
    J Szatkowaski and K Sieranski Solid State Electron. 35,7 (1992) 1013.Google Scholar
  11. 11.
    A Turut, M Saglam, H Efeoglu, N Yaclm, M yildirm and B abay, Physica B 205 (1995) 41.Google Scholar
  12. 12.
    H C Card and E H Rhoderick, J Phys. D Appl. Phys. 4 (1971) 1589.Google Scholar
  13. 13.
    P P Sahay, M Shamsuddin and R S Srivastava Microelectronicsjornal, 23 (1992) 625.Google Scholar
  14. 14.
    S Chattpadhaya, L K Bera, S K Ray, P K Bose and C K Maiti, Thin Solid Films, 335 (1998) 142.CrossRefGoogle Scholar
  15. 15.
    Naryan Chandrika Ph.D Thesis “Tuning of the Schottky Barrier height using Bi-Metallic layered Structures page No.40 (1992).Google Scholar
  16. 16.
    H Haick, M Ambrico, T Ligonzo, R T tung, D Cahen, J. Am. Chem. Soc., 128 (2006) 6854.CrossRefGoogle Scholar
  17. 17.
    M. Ozer et al. Solid –State Electronics 51 (2007) 941.Google Scholar
  18. 18.
    M Cakur, C Temirci, A Turut, Synth. Met., 142 (2004) 177.Google Scholar
  19. 19.
    W monch, Semiconductor Surfaces and Interfaces, Third ed. Springer, Berlin, 2001.CrossRefGoogle Scholar
  20. 20.
    S pandey, S Kal, Solid State Electron. 42 (1998) 943.Google Scholar
  21. 21.
    P Cova, A Singh, Solid State Electron. 33 (1990) 11.Google Scholar
  22. 22.
    M K Hudait, S B Krupanidhi, Physica B 307 (2001) 125. Fahrettin Yakuphanoglu Synthetic Metals 158 (2008) 108.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of PhysicsVeer Narmad South Gujarat UniversitySuratIndia

Personalised recommendations