Structural and Optical Studies of Sol-Gel Deposited Nanostructured ZnO Thin Films: Annealing Effect

Conference paper
Part of the Environmental Science and Engineering book series (ESE)

Abstract

Zinc oxide (ZnO) thin films were deposited by sol–gel spin coating method on the glass substrate and then the film was annealed at 350, 450, 550 °C for 1 h. Effect of annealing temperature on the structural and optical properties of the film was investigated. Annealed ZnO thin films are polycrystalline with (002) preferential orientation. The information on Crystalline size is obtained from the full width-at half- maximum (FWHM) of the diffraction peaks. The surface morphology of the films was investigated by atomic force microscopy (AFM). Surface roughness was found minimum (8.4 nm) for ZnO sample annealed at 450 °C. The maximum transmittance of 87 % is observed for the film annealed at 450 °C. The optical band gap value decreased and crystalline size increased with increasing the annealing temperatures.

Keywords

ZnO thin films Sol-gel Annealing temperature X-ray diffraction UV-spectrometer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. C. Look, D. C. Reynolds, J. R. Sizelove, R L Jpnes, C. W Litton, G. Cantwell, W.C. Harch, Solid state comm., 105, 399 (1998).Google Scholar
  2. 2.
    Sun H, Zhang Q F and Wu J L Acta Phys. Sin. 56 3479 (2007)Google Scholar
  3. 3.
    Kulkarni A. J. and Zhou M Appl. Phys. Lett. 88 141921 (2006)CrossRefGoogle Scholar
  4. 4.
    Liu D F,Tang D S,Ci L J,Yan X Q,Liang Y X,Zhou Z P, Yuan H J, Zhou W Y and Wang G Chin. Phys.Lett. 20 928 (2003).Google Scholar
  5. 5.
    Wen Q,Li Q H,Chen Y J,Wang T H,He X L,Li J P and Lin C L Appl. Phys. Lett. 84 3654 (2004)CrossRefGoogle Scholar
  6. 6.
    A. J. Ronovich, D. Golmoya, H. R. Bube, J. Appl. Phys., 51, 4260 (1980).Google Scholar
  7. 7.
    V. Srikant, D. R. Clarke, J. Appl. Phys., 81, 6357 (1997).Google Scholar
  8. 8.
    T. Minami, H. Nato, S. A. Takata, Thin Solid Films, 124, 43 (1985).CrossRefGoogle Scholar
  9. 9.
    M. D. McCluskey and S. J. Jokela, J. Appl. Phy, 106, 071101 (2009).Google Scholar
  10. 10.
    O,vigil, F. Cruz, G.santana et al material chemistry and physics 68 249-252 (2001).CrossRefGoogle Scholar
  11. 11.
    S. Muthukumar, C.R. Gorla, N.W. Emanetoglu, S. Liang, Y. Lu, J. Cryst. Growth 225 197–201 (2001).Google Scholar
  12. 12.
    B.J. Jin, S.H. Bae, S.Y. Lee, S. Im, Mater. Sci. Eng. B 71 301–305 (2000).Google Scholar
  13. 13.
    B.J. Jin, S. Im, S.Y. Lee, Thin Solid Films 366 107–110 (2000).CrossRefGoogle Scholar
  14. 14.
    F.singh, Sanjeev kumar A.Kapoor et al. J.Appl.phys 112, 73101 (2012).Google Scholar
  15. 15.
    D. C. Look, D. C. Reynolds, J. W. Hemsky, R. L. Jones and J. R. Sizelove, Appl. Phys. Lett. 75, 811 (1999).CrossRefGoogle Scholar
  16. 16.
    V. L. Azaroff, Elements of X-ray Crystallography, McGraw Hill, New York (1968).Google Scholar
  17. 17.
    X. Jiang, F. L. Wong, M. K. Fung, S. T. Lee, Appl. Phys. Lett. 83 1875 (2003).CrossRefGoogle Scholar
  18. 18.
    A. E. Jimenez-Gonzalez, J. A. S. Urueta, R. J. Suarez-Parra, Cryst. Growth 192 430 (1998).Google Scholar
  19. 19.
    K. F. Lin, H. M. Cheng, H. C. Hsu, W. F. Hsieh, Chem. Phys. Let 409, 208 (2005).Google Scholar
  20. 20.
    M. Ohring: Material Science of Thin Films: Deposition and Structure, 2nd edn, Academic, San Diego, 386 - 400 (2001).Google Scholar
  21. 21.
    R. Sharma, K. Sehrawat, A. Wakahara and R.M. Mehra: Appl. Surf. Sci., 255, 5781(2009).Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Electronic ScienceUniversity of Delhi South CampusNew DelhiIndia
  2. 2.Materials Science GroupInter University Accelerator CentreNew DelhiIndia

Personalised recommendations