Advertisement

Structural and Optical Characterization of β-Ga2O3 Thin Films Grown by Pulsed Laser Deposition

  • Anshu Goyal
  • Brajesh S. Yadav
  • O. P. Thakur
  • A. K. Kapoor
Part of the Environmental Science and Engineering book series (ESE)

Abstract

Polycrystalline β-Ga2O3 thin films were grown on sapphire substrate (0001) by pulsed laser deposition (PLD) technique. The crystalline structure and optical band gap were studied as a function of growth temperature, laser beam energy, annealing temperature and time. To tailor the band gap of β-Ga2O3 thin films by Al diffusion from the sapphire substrate the films were annealed for 24 h at different temperatures. The amount of Al diffusion was different for different temperatures of annealing which resulted in the increase of band gap as well as the shift of diffraction peaks to higher angles with increasing temperature. The annealed films showed high transparency in the deep UV region of the spectrum.

Keywords

β-Ga2O3 PLD (pulsed laser deposition technique) X-ray Band gap 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors would like to thank Dr. R Muralidharan, Director SSPL for his support in carrying out the work.

References

  1. 1.
    S. Geller, J. Chem. Phys. 33 (1960) 676.Google Scholar
  2. 2.
    J. Ahman, G. Svensson, and J. Albertsson, ActaCrystallogr. Sect. C52 (1996) 1336.Google Scholar
  3. 3.
    H. H. Tippins, Phys. Rev. A 140 (1965) 316.CrossRefGoogle Scholar
  4. 4.
    T. Matsumoto, M. Aoki, A. Kinoshita, and T. Aono, Jpn. J. Appl. Phys. 13 (1974) 1578.CrossRefGoogle Scholar
  5. 5.
    H. G. Kim and W.-T. Kim, J. Appl. Phys. 62 (1987) 2000.Google Scholar
  6. 6.
    N. Ueda, H. Hosono, R. Waseda, and H. Kawazoe, Appl. Phys. Lett. 71 (1997) 933.CrossRefGoogle Scholar
  7. 7.
    Z. Hajnal, J. Miro, G. Kiss, F. Reti, P. Deak, R. C. Herndon, and J. M. Kuperberg, J. Appl. Phys. 86 (1999) 3792.Google Scholar
  8. 8.
    M. Passlack, M. Hong, and J. P. Mannaerts, Appl. Phys. Lett. 68 (1996) 1099.CrossRefGoogle Scholar
  9. 9.
    Z. Li, C. de Groot, J. Jagadeesh, and H. Moodera, Appl. Phys. Lett. 77 (2000) 3630.CrossRefGoogle Scholar
  10. 10.
    L. Binet and D. Gourier, J. Phys. Chem. Solids 59 (1998) 1241.Google Scholar
  11. 11.
    M. Fleischer and H. Meixner, J. Appl. Phys. 74 (1993) 300.Google Scholar
  12. 12.
    A. Callegari, P. D. Hoh, D.A. Buchanan and D. Lacey, Appl. Phys. Lett. 54 (1989) 332.CrossRefGoogle Scholar
  13. 13.
    Ching-Ting Lee, Hong-Wei Chen, and Hsin-Ying Lee, Appl. Phys. Lett. 82 (2003) 4304.CrossRefGoogle Scholar
  14. 14.
    F. K. Shan, G. X. Liu, W. J. Lee, G. H. Lee, I. S. Kim, and B. C. Shin, J. Appl. Phys. 98 (2005) 023504.Google Scholar
  15. 15.
    M. Passlack, E. F. Schubert, W. S. Hobson, M. Hong, N. Moriya, S. Chu, K. Konstadinidis, J. P. Mannaerts, M. L. Schnoes, and G. J. Zydzik, J. Appl. Phys. 77 (1995) 686.Google Scholar
  16. 16.
    Encarnación G. Víllora, Kiyoshi Shimamura, Kenji Kitamura, and Kazuo Aoki, Appl. Phys. Lett. 88 (2006) 031105.CrossRefGoogle Scholar
  17. 17.
    Yutaka et al, Journal of ceramic society of Japan 117(9) (2009) 973-977.Google Scholar
  18. 18.
    Yoshihiro Kokubun, Kasumi Miura, Fumie Endo, and Shinji Nakagomi, Appl. Phys. Lett. 90 (2007) 031912.CrossRefGoogle Scholar
  19. 19.
    M. Ogita, N. Saika, Y. Nakanishi and Y. Hatanaka, Applied Surface Science 142 (1999) 188 .CrossRefGoogle Scholar
  20. 20.
    C. Babana, Y. Toyoda and M. Ogita, Thin Solid Films 484 (2005) 369.CrossRefGoogle Scholar
  21. 21.
    Kiyoshi Shimamura, Encarnacio, Kay Domen, Keiichi Yui, Kazuo Aoki and Noboru Ichinose, Japanese Journal of Applied Physics, 44 (2005) L7.Google Scholar
  22. 22.
    Doo Hyun Kim, Seung Ho Yoo, Taek-Mo Chung, KiSeok An, HeeSoo Yoo, and Yunsoo Kim, Bull. Korean Chem. Soc. 23 (2002) 225.Google Scholar
  23. 23.
    Sin-Liang Oua, Dong-Sing Wuua, Yu-Chuan Fu, Shu-Ping Liu, Ray-Hu Horng, Lei Liud, Zhe-Chuan Fengd, Materials Chemistry and Physics 133 (2012) 700.CrossRefGoogle Scholar
  24. 24.
    Sang-A Lee et al, Appl. Phy. Lett. 89 (2006) 182906.Google Scholar
  25. 25.
    Rong Huang, Hiroyuki Hayashi, Fumiyasu Oba, and Isao Tanaka, Journal of Applied Physics 101(2007) 063526.CrossRefGoogle Scholar
  26. 26.
    Masahiro Orita, Hidenori Hiramatsu, Hiromichi Ohta, Masahiro Hirano, Hideo Hoson Thin Solid Films 411 (2002) 134.CrossRefGoogle Scholar
  27. 27.
    B.D. Cullity, Elements of X-ray Diffraction, second ed., Addison Wesley, 1978, pp.99.Google Scholar
  28. 28.
    C.S. Barrett, Structure of Metals, third ed., McGraw-Hill, 1968, pp.205.Google Scholar
  29. 29.
    C.H. Ma, J.H. Huang, Haydn Chen, Thin Solid Films 418 (2002) 73.CrossRefGoogle Scholar
  30. 30.
    M. Fleischer, W. Hanrieder, and H. Meixner, Thin Solid Films 190 (1990) 93.CrossRefGoogle Scholar
  31. 31.
    G. A. Battiston, R. Gerbasi, M. Porchia, R. Bertoncello, and F. Caccavale, Thin Solid Films 279 (1996) 115.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Anshu Goyal
    • 1
  • Brajesh S. Yadav
    • 1
  • O. P. Thakur
    • 1
  • A. K. Kapoor
    • 1
  1. 1.Solid State Physics LaboratoryTimarPurIndia

Personalised recommendations