Synthesis of Multilayer Graphene by Filtered Cathodic Vacuum Arc Technique

  • O. S. Panwar
  • Ajay Kesarwani
  • Atul Bisht
  • Sreekumar Chockalingam
  • S. R. Dhakate
  • B. P. Singh
  • R. K. Rakshit
Part of the Environmental Science and Engineering book series (ESE)


Filtered cathodic vacuum arc technique has been used to deposit amorphous carbon films of varying thickness on catalytic nickel thin film grown on SiO2/Si substrates. Subsequently these a-C films were annealed in vacuum at 650 °C. Raman spectroscopy together with optical microscopy and scanning electron microscopy has revealed multilayer graphene formation.


Graphene Filtered cathodic vacuum arc Raman spectroscopy Optical microscopy Scanning electron microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful to Prof. R. C. Budhani, Director, CSIR-National Physical Laboratory, New Delhi (India), for his kind permission to publish this paper. They wish to thank Dr. Kamal Jeet of CEERI, Pilani for growing SiO2 layer on Si wafer, Dr. S. K. Singhal and Dr. H. K. Singh for help in annealing the samples, Mr. A. K. Sood for providing SEM micrograph, Mr. C. M. S. Rauthan, Mr. R. K. Tripathi, for their help and useful discussion. Mr. Ajay Kumar Kesarwani and Mr. Atul Bisht are grateful to the Council of Scientific and Industrial Research (CSIR) and University Grant Commission (UGC), Government of India, respectively, for financial assistance during the course of this work.


  1. 1.
    A. K. Geim and K. S. Novoselov, Nat. Mater., 6, 183 (2007).Google Scholar
  2. 2.
    X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang and H. Dai, Nat. Nanotechnol., 3, 538 (2008).Google Scholar
  3. 3.
    J. Wang, K. K. Manga, Q. Ban and K. P. Loh, J. Amer. Chem. Soc., 133, 8888 (2011).Google Scholar
  4. 4.
    A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Blovic, M. S. Dresselhaus and J. Kong, Nano Lett., 9, 3087 (2009).Google Scholar
  5. 5.
    K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L.Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, Rohrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Bayer and T. Seyller, Nature Mater., 8, 203 (2009).CrossRefGoogle Scholar
  6. 6.
    H. Ji, Y. Hao, Y. Ren, M. Charlton, W. H. Lee, Q. Wu, H. Li, Y. Zhu, Y. Wu, R. Piner and R. S. Ruoff, ACS Nano, 5, 7656 (2011).CrossRefGoogle Scholar
  7. 7.
    M. Zheng, K. Takai, B. Hsia, H. Fang, X. Zhang, N. Ferralis, H. Ko, Y. L. Chueh, Y. Zhang, R. Maboudin, and A. Javey, Appl. Phys. Lett., 96, 063110 (2010).CrossRefGoogle Scholar
  8. 8.
    K. Fujita, K. Banno, H. R. Aryal and T. Igawa, Appl. Phys. Lett., 101, 163109 (2012).CrossRefGoogle Scholar
  9. 9.
    J. H. Seo, H. W. Lee, J. K. Kim, J. W. Kang, M. S. Wang and C. S. Kim, Current Appl. Phys., 12, S131 (2012).Google Scholar
  10. 10.
    K. S. Subrahmanyam, L. S. Panchakarla, A. Govindaraj and C. N. R. Rao, J. Phys. Chem. C, 113, 4257 (2009).CrossRefGoogle Scholar
  11. 11.
    O. S. Panwar, Y. Aparna, S. M. Shivaprasad, M.A. Khan, B. S. Satyanarayana and R. Bhattacharya, Appl. Surf. Sci., 221, 392 (2004).Google Scholar
  12. 12.
    O. S. Panwar, M. A. Khan, Mahesh Kumar, S. M. Shivaprasad, B. S. Satyanarayana, P. N. Dixit, R. Bhattacharyya and M. Y. Khan, Thin Solid Films, 516, 2331 (2008).CrossRefGoogle Scholar
  13. 13.
    O. S. Panwar, M. A. Khan, G. Bhagavanarayana, P. N. Dixit, Sushil Kumar and C. M. S. Rauthan, Ind. J. Pure and Appl. Phys., 46,797 (2008).Google Scholar
  14. 14.
    A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, Phys. Rev. Lett., 97, 187401 (2006).Google Scholar
  15. 15.
    Y. Hao, Y. Wang, L. Wang, Z Ni, Z. Wang,C. K. Koo, Z. Shen and J. T. L. Thong, Small, 6,195 (2010).CrossRefGoogle Scholar
  16. 16.
    A. Gupta, G. Chen, P. Joshi, S. Tadigadapa and P. C. Eklund, Nano Lett., 6, 2667 (2006).Google Scholar
  17. 17.
    O. S. Panwar, A. K. Kesarwani, S. R. Dhakate, B. P. Singh, Atul Bisht and Sreekumar Chockalingam, J. Vac. Sci. Technol. B, 31, 040602 (2013).Google Scholar
  18. 18.
    Y. Zhang, L. Comez, F. N. Ishikawa, A. Madaria, K. Ryu, C. Wang, A. Badmaev and C. Zhou, J. Phys. Chem. Lett., 1, 3101 (2010).CrossRefGoogle Scholar
  19. 19.
    P. Blake, E.W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth and A. K. Geim, Appl. Phys. Lett., 91, 063124 (2007).CrossRefGoogle Scholar
  20. 20.
    Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng and Z. X. Shen, Nano Lett., 7, 2758 (2007).Google Scholar
  21. 21.
    S. Rodaroo, P.Pungue, V. Piazza, P. Pellegrini and F.Beltram, Nano Lett., 7, 2707 (2007).CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • O. S. Panwar
    • 1
  • Ajay Kesarwani
    • 1
  • Atul Bisht
    • 1
  • Sreekumar Chockalingam
    • 1
  • S. R. Dhakate
    • 2
  • B. P. Singh
    • 2
  • R. K. Rakshit
    • 3
  1. 1.Polymorphic Carbon Thin Films GroupPhysics of Energy Harvesting DivisionNew DelhiIndia
  2. 2.Physics and Engineering of Carbon, Division of Material Physics and EngineeringNew DelhiIndia
  3. 3.Quantum Transport in Thin Film Heterostructures, Quantum Phenomena and Applications GroupCSIR-National Physical LaboratoryNew DelhiIndia

Personalised recommendations