Advertisement

Lattice Thermal Conductivity of Silicene

  • M. D. Kamatagi
  • James Elliott
  • N. S. Sankeshwar
  • A. Lindsay Greer
Part of the Environmental Science and Engineering book series (ESE)

Abstract

The lattice thermal conductivity, κp, of suspended silicene is studied, using theoretical model and numerical calculations, over a wide temperature range (2 < T < 400 K). Explicit contributions from the in-plane longitudinal acoustic (LA) and transverse acoustic (TA) phonons and out-of-plane flexural (ZA) phonons are taken into account. Scattering of phonons by system boundaries, impurities and other phonons via umklapp process are considered. Numerical results presented show that, at low temperatures, the ZA phonon contribution is dominant, whereas at higher temperatures the LA and TA phonon contributions become important. A step-like behavior of κ p at low temperatures is observed due to the dominance of the ZA phonons. The study highlights the relative importance of the three acoustic phonon modes in limiting κ p , which could have important implications for the thermoelectric effect in silicene.

Keywords

Silicene Thermal conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

One of the authors (MDK) acknowledges the Pavate Foundation and Karnatak University, Dharwad for the award of Dr. D.C. Pavate Visiting Fellowship at Cambridge University, UK.

References

  1. 1.
    Abdelkader Kara, Hanna Enriquez, Ari P. Seitsonen, L.C. Lew Yan Voon, Sébastien Vizzini, Bernard Aufray, Hamid Oughaddou, Surface Science Reports 67, 1 (2012)CrossRefGoogle Scholar
  2. 2.
    Boubekeur Lalmi,Hamid Oughaddou, Hanna Enriquez, Abdelkader Kara,Sébastien Vizzini, Bénidicte Ealet, and Bernard Aufray, Appl. Phys. Lett. 97, 223109 (2010)CrossRefGoogle Scholar
  3. 3.
    Ming Hu, Xiaoliang Zhang, and Dimos Poulikakos, Phys. Rev. B 87, 195417 (2013)Google Scholar
  4. 4.
    Lin Wang & Huai Sun, J Mol Model 18, 4811 (2012)CrossRefGoogle Scholar
  5. 5.
    PG Klemens, DF Pedraza Carbon,32, 735, (1994)CrossRefGoogle Scholar
  6. 6.
    D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, Phys. Rev. B, 79, 155413 (2009)Google Scholar
  7. 7.
    S Ghosh, D L Nika, E P Pokatilov and A A Balandin, New J. of Physics., 11, 095012 (2008)Google Scholar
  8. 8.
    M. D. Kamatagi, A. S. Nissimagoudar, N. S. Sankeshwar, and B. G. Mulimani, AIP Conf. Proc. 1447, 945 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • M. D. Kamatagi
    • 1
    • 3
  • James Elliott
    • 1
  • N. S. Sankeshwar
    • 2
  • A. Lindsay Greer
    • 1
  1. 1.Department. of Material Science and MetallurgyUniversity of CambridgeCambridgeUK
  2. 2.Department of PhysicsKarnatak UniversityDharwadIndia
  3. 3.S.S.Government First Grade CollegeNargundIndia

Personalised recommendations