Chalcogenide Micro/Nanostructures by Evaporation Condensation Method

  • Swati Raman
  • Ravi K. Kumar
  • M. Husain
Conference paper
Part of the Environmental Science and Engineering book series (ESE)


Chalcogenide (As-S-Se) micro/nanostructures have been successfully synthesized using thermal evaporation-condensation method in evacuated glass ampoule. The nanowires have diameter ranging between 10 and 20 nm and they are few microns in length. The structures are characterized using Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS) and X Ray Diffraction (XRD) for their morphology, composition and structure respectively. These nanowires show promising applications in the field of nanoelectronics and nanophotonics.


Chalcogenide Nanowires and nanophotonics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Swati Raman and Ravi K. Kumar thanks CSIR for providing financial support in the form of Research Associateship and Senior Research Fellowship respectively.


  1. 1.
    M.F. Daniel, A.J. Leadbetter, A.C. Wright and R. N. Sinclair, J. Non-Cryst. Sol., 32, 271 (1979).Google Scholar
  2. 2.
    M.V. Baidakova, N.N. Faleev, T.F. Majets and E.A. Smorgonskaya, J. Non-Cryst. Sol., 192&193, 149 (1995).Google Scholar
  3. 3.
    J. Hu, T.W. Odom and C. M. Lieber, Acc. Chem. Res., 32, 435 (1999).CrossRefGoogle Scholar
  4. 4.
    J. Rouxel (Ed.), Crystal Chemistry and Properties of Materials with Quasi-one-dimensional Structures, D. Riedel, Boston, (1986).Google Scholar
  5. 5.
    J.A. Wilson, F.J. DiSalvo and S. Mahajan, Adv. Phys. 24, 117 (1975).Google Scholar
  6. 6.
    G. Seifert, T. Kohler and R. Tenne, J. Phys. Chem. B, 106, 2497 (2002).CrossRefGoogle Scholar
  7. 7.
    Y. Li, Y. Ding, H. Liao and Y. Qian, J. Phys. Chem. Solids, 60, 965 (1999).Google Scholar
  8. 8.
    M.A. Malik, N. Revaprasadu and P. O’Brien, Chem. Mater., 13, 913 (2001).CrossRefGoogle Scholar
  9. 9.
    Q. Li, Y. Ding, M. Shao, J. Wu, G. Yu and Y. Qian, Mater. Res. Bull, 38, 539 (2003).Google Scholar
  10. 10.
    A. Kikineshi, A. Mishak, V. Palyok and M. Shiplyak, Nanostruct. Mater., 12, 417 (1999).Google Scholar
  11. 11.
    D. Nasheva, H. Hofmeister, Z. Levi and Z. Aneva, Vacuum, 65, 109 (2002).CrossRefGoogle Scholar
  12. 12.
    M. Brust, N. Stuhr-Hansen, K. Norgaard, J. B. Christensen, L.K. Nielsen and T. Bjornholm. Nano Lett., 1, 189 (2001).CrossRefGoogle Scholar
  13. 13.
    A.V. Kolobov, H. Oyanagi, A. Roy and K. Tanaka, J. Non-Cryst. Sol., 232-234, 80(1998).Google Scholar
  14. 14.
    R.S. Wagner and W.C. Elis, Appl. Phys. Lett., 4, 89 (1964).CrossRefGoogle Scholar
  15. 15.
    E.I. Givargizov, J. Cryst. Growth, 32, 20 (1975).Google Scholar
  16. 16.
    G. D. Saundres and Y.C. Chaing, Phys. Rev. B., 45, 9202 (1992).CrossRefGoogle Scholar
  17. 17.
    C. R. Martin, Science, 266, 1961 (1994).CrossRefGoogle Scholar
  18. 18.
    A.P. Alivisatos, Science, 271, 933 (1996).CrossRefGoogle Scholar
  19. 19.
    T. J. Trentler, K.M. Hickman, S.C. Goel, A. M. Viano, P. C. Gibbons and W.E. Buhro, Science, 270, 1791 (1995).CrossRefGoogle Scholar
  20. 20.
    B. R. Johnson, M. J. Schweiger and S. K .Sundaram, J. Non-Cryst. Sol., 351,1410 (2005).Google Scholar
  21. 21.
    K. El-Bayoumy, Mutation Res.,475, 123 (2001).Google Scholar
  22. 22.
    W.B. Campbell, Whisker Technology, Wiley, New York, (1990).Google Scholar
  23. 23.
    Y.P. Zhao, J.T. Drotar, G.C. Wang and T.M. Lu, Phys. Rev. Lett., 87, 136102 (2001).Google Scholar
  24. 24.
    G.S. Bales, A.C. Redfield and A. Zangwill, Phys. Rev. Lett., 62, 776 (1989).CrossRefGoogle Scholar
  25. 25.
    C. Hwang, H. Yang, J. Hsieh and Y. Dai, Thin Solid Films, 304, 371 (1997).CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of PhysicsJamia Millia IslamiaNew DelhiIndia
  2. 2.Centre for Nanoscience and NanotechnologyJamia Millia IslamiaNew DelhiIndia

Personalised recommendations