Advertisement

Electrical Characterization of n-ZnO Nanowires/p-Si Based Heterojunction Diodes

  • Divya Somvanshi
  • S. Jit
Part of the Environmental Science and Engineering book series (ESE)

Abstract

We report electrical characteristics of n-ZnO NWs/p-Si based heterojunctions diode fabricated by oxidation of thermally deposited metallic Zn on Al:ZnO coated p-Si substrates. The surface morphology of ZnO NWs has been investigated by atomic force microscopy (AFM). The carrier donor concentration of the ZnO NW films and barrier height of the heterojunction diode estimated from the CV characteristics are 1.54 × 1015 cm−3 and 0.75 eV respectively. The estimated values of the barrier height and ideality factor from room temperature IV characteristic are 0.73 eV and 2.13 respectively. As obtained value of barrier height from CV characteristic is a bit higher then IV characteristic, indicates presence of barrier inhomogeneity at the n-ZnONWs/p-Si interfaces. Furthermore, the value of series resistance \( \left( {{\text{R}}_{\text{s}} } \right) \) has also been determined from forward bias I–V characteristics using Chueng’s function

Keywords

ZnO NW Heterojunction diode Barrier height Series resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. G. Lu, P. Chang and Z. Fan, Mater. Sci. Eng. R, 52, 49 (2006).Google Scholar
  2. 2.
    Z. L. Wang, Mater Today, 7, 26 (2004)Google Scholar
  3. 3.
    J. L. Wang and J. Song, Science, 312, 242 (2006).CrossRefGoogle Scholar
  4. 4.
    J. C. Kyoung, and H.W. Jang, Sensors, 10, 4083 (2010).CrossRefGoogle Scholar
  5. 5.
    S. Majumdar and P. Banerji, J. Appl. Phys., 105, 043704 (2009).Google Scholar
  6. 6.
    S. Majumdar, S. Chattopadhayay and P. Banerji, Appl. Surf. Sci., 254, 6141 (2009).Google Scholar
  7. 7.
    S. Chirakkara, S.B. Krupanidhi,, Thin Solid Films, 520, 894 (2012)CrossRefGoogle Scholar
  8. 8.
    Y. I. Alivov, E.V. Kalinina, A. E. Cherenkov, D. C Look, B. M. Ataev, A. K. Omaev, M.V. Chukichev, and D. M. Bagnall, Appl. Phys. Lett., 83, 4719 (2003).CrossRefGoogle Scholar
  9. 9.
    Y. I. Alivov, Ü. Özgür, S. Doğan, D. Johnstone, V. Avrutin, N. Onojima, C. Liu, J. Xie, Q. Fan, and H. Morkoç, Appl. Phys. Lett., 86, 241108 (2005)CrossRefGoogle Scholar
  10. 10.
    S. M. Sze, “Physics of Semiconductor Devices,” 2nd Edition, John Wiley and Sons, New York, 1981Google Scholar
  11. 11.
    R. Romero, M.C. López, D. Leinen, F. F. Martin, J.R. Ramos-Barrado, Mater. Sci. Eng. B, 110, 87 (2004).Google Scholar
  12. 12.
    R. F. Schmitsdorf, T. U. Kampen, and W. Mönch, J. Vac. Sci. Technol. B, 15, 1221 (1997).Google Scholar
  13. 13.
    S. K. Cheung and N. W. Cheung, Appl. Phys. Lett. 49 (1986).CrossRefGoogle Scholar
  14. 14.
    S. Al-Heniti, R. I. Badran, A. Umar, A. Al-Ghamdi, S. H. Kim, F. Al-Marzouki, A. Al-Hajry, S. A. Al-Sayari, and T. Al-Harbi “J. Nanosci. Nanotechnol., 12, 68 (2012).Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Center for Research in Microelectronics (CRME), Department of Electronics EngineeringIndian Institute of Technology (Banaras Hindu University)VaranasiIndia

Personalised recommendations