Advertisement

Characterization of Carbon Nanotube Field Effect Transistor Using Simulation Approach

  • Devi Dass
  • Rakesh Prasher
  • Rakesh Vaid
Part of the Environmental Science and Engineering book series (ESE)

Abstract

As the size of the Si MOSFET approaches towards its limiting value, various short channel effects appear to affect its performance. Carbon nanotube field effect transistor (CNTFET) is one of the novel nanoelectronic devices that overcome those MOSFETs limitations. In this paper we have studied the effect of scaling carbon nanotube (CNT) diameter, insulator thickness and high-k dielectric materials on current-voltage characteristics of co-axial gated ballistic n-type CNTFET. The device metrics such as drive current (Ion), leakage current (Ioff), Ion/Ioff ratio, transconductance, subthreshold slope (S) and drain induced barrier lowering (DIBL) are also studied in this paper. The simulation results obtained are then compared with conventional nanoscale n-type MOSFET. It has been concluded that CNTFET seem to provide better performance than conventional nanoscale n-type MOSFET in term of high speed capability and lower switching power consumption.

Keywords

CNTFET Insulator thickness High-k CNT diameter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Hasegawa, S. Kasai, and T. Sato, IEICE Transaction on Electron, E87-C, 1757 (2004).Google Scholar
  2. 2.
    A.M. Hashim, H.H. Pung, C.Y. Pin, Jurnal Teknologi, 49, 129 (2008).Google Scholar
  3. 3.
    D. Dass, R. Prasher, and R. Vaid, Journal of nano and electronic physics, 5, 020141 (2013).Google Scholar
  4. 4.
    P. L. McEuen, M. S. Fuhrer, and H. Park, IEEE Transaction on Nanotechnology, 1, 78 (2002).CrossRefGoogle Scholar
  5. 5.
    M. S. Dresselhaus, Carbon Nanotubes, 1998. Physics World.com.Google Scholar
  6. 6.
    M. S. Dresselhaus, G. Dresselhaus, and Ph. Avouris, New York: Springer-Verlag, 329 (2001).Google Scholar
  7. 7.
    S. J. Tans, R. M. Vershueren, and C. Dekker, Nature, 393, 49 (1998).CrossRefGoogle Scholar
  8. 8.
    A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom, and H. Dai, Nature Materials, 1, 241 (2002).CrossRefGoogle Scholar
  9. 9.
    A. Rahman, J. Wang, J. Guo, Md. Sayed Hasan, Y.Liu, A. Matsudaira, S. S. Ahmed, S. Datta, and M. Lundstrom, FETToy, 10254/nanohub-r220.4, 2006.Google Scholar
  10. 10.
    A. Rahman, J.Guo, S. Datta, and M. Lundstrom, IEEE Transaction on Electron Devices, 50, 1853 (2003).CrossRefGoogle Scholar
  11. 11.
    R. Chau, B. Boyanov, B. Doyle, M. Doczy, S. Datta, S. Hareland, B. Jin, J. Kavalieros, and M. Metz, Physica E, 19, 1 (2003).Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Physics & ElectronicsUniversity of JammuJammuIndia

Personalised recommendations