A Novel Nanographite Based Non-enzymatic Cholesterol Sensor

  • Bhawana Singh
  • Nitin Bharadwaj
  • V. K. Jain
  • Vasuda Bhatia
Part of the Environmental Science and Engineering book series (ESE)

Abstract

This work reports a new non enzymatic cholesterol detection sensor using functionalized nanographite. This nanostructure was characterized by FTIR, SEM, TEM, XRD and EDX. Using nanographite as a working electrode, Ag/Agcl as a reference and platinum as a counter electrode a good non enzymatic cholesterol sensor was constructed. Under optimal detection conditions, the constructed sensor had a linear range of 50 to 500 mg/dl for cholesterol with a correlation co-efficient of 0.99784. Sensitivity of the developed cholesterol sensor is 1.0587 μA/mg. This biosensor showed good reproducibility, stability and low interferences.

Keywords

Non enzymatic Sensor Cholesterol Nanographite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors thank Dr. Ashok Chauhan founder of Amity University and JNU for providing facility for TEM and XRD.

References

  1. 1.
    S. K. Arya, M. Datta, B. D. Malhotra, Biosens. Bioelectron. 23 (2008) 1083–1100.Google Scholar
  2. 2.
    S.K.Arya, P.R.Solanki, S.P.Singh, K. Kaneto, M. K. Pandey, M.Dutta, B. D. Malhotra, Biosens. Bioelectron. 22 (2007), 2516-2524Google Scholar
  3. 3.
    S. Aravamudhan, N. S. Ramgir, S. Bhansali, Sens. Actuators B.127 (2007) 29–35.Google Scholar
  4. 4.
    S. Brahim, D. Narinesingh, A. Guiseppi-Elie, Anal. Chim. Acta. 448 (2001) 27–36.Google Scholar
  5. 5.
    L.C.Clark, C. Lyons, Ann. N.Y. Acad. Sci. 102 (1962) 29-45.Google Scholar
  6. 6.
    S. J. Updike, G. P. Hicks, Nature. 214 (1967) 986-988.CrossRefGoogle Scholar
  7. 7.
    J. H. Yu, S. Q. Liu, X. H. Ju, Biosens. Bioelectron.19 (2003) 401-409.Google Scholar
  8. 8.
    J. MacLachlan, A. T. L. Wotherspoon, R. O. Ansell, C. J. W. Brooks, J. Steroid Biochem. Mol. Biol. 72 (2000) 169–195Google Scholar
  9. 9.
    J. H. Yu, S. Liu, H. Ju, Biosens. Bioelectron. 19(2003) 401–409.Google Scholar
  10. 10.
    S. Park, H. Boo, T. D. Chung, Anal. Chim. Acta. 556(2006) 46–57.Google Scholar
  11. 11.
    F. Ricci, G. Palleschi, Biosens. Bioelectron. 21 (2005) 389- 407.Google Scholar
  12. 12.
    J. L. Yi, D. K. Jung, Y. P. Jae, J. Korean Phys. Soc. 54 (2009) 1769- 1773.Google Scholar
  13. 13.
    G. L. Che, B. B. Lakshmi, E. R. Fisher, C. R. Martin, Nature. 393 (1998) 346-349.CrossRefGoogle Scholar
  14. 14.
    M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang, Science. 292 (2001) 1897- 1899.Google Scholar
  15. 15.
    Z. K. Tang, L. Y. Zhang, N. Wang, X. X. Wang, G. H. Wen, G. D. Li, J. N. Wang, C. T. Chan, P. Sheng, Science. 292 (2001) 2462-2465.CrossRefGoogle Scholar
  16. 16.
    P. Kohli, C.C. Harrell, Z. H. Cao, R. Gasparc, W. H. Tan, C. R. Martin, Science. (2004) 984-986.Google Scholar
  17. 17.
    A. Kolmakov, X.Y. Zhang, G. S. Cheng, M. Moskovits, Adv. Mater. 15 (2003) 997-1000.CrossRefGoogle Scholar
  18. 18.
    E.A. Heins, Z.S.Siwy, L.A.Baker, C. R. Martin, Nano Lett. 5 (2005) 1824-1829.CrossRefGoogle Scholar
  19. 19.
    X. Y. Zhang, W. Lu, J. Y. Da, H. T. Wang, D. Y. Zhao, P. A. Webley, Chem. Commun.(2009) 195-197.Google Scholar
  20. 20.
    T. Nakajima and Y. Matsuo, Carbon. 32 (1994) 469.CrossRefGoogle Scholar
  21. 21.
    A. Herold, D. Petitjean, G. Furdin, M. Klatt, Mater Sci Forum. 281 (1994) 152-153.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Bhawana Singh
    • 1
  • Nitin Bharadwaj
    • 1
  • V. K. Jain
    • 1
  • Vasuda Bhatia
    • 1
  1. 1.Amity Institute for Advanced Research and StudiesAmity UniversityNoidaIndia

Personalised recommendations