Field-Emission Study of Carbon Nanotubes Grown by Low Pressure Chemical Vapour Deposition on Single and Dual Layer of Catalyst

  • Javid Ali
  • Avshish Kumar
  • Samina Husain
  • Shama Parveen
  • Sunny Khan
  • Harsh
  • M. Husain
Conference paper
Part of the Environmental Science and Engineering book series (ESE)

Abstract

In the present research work, CNTs are synthesized by Low Pressure Chemical Vapor Deposition (LPCVD) method at 600 °C. The Si substrate is coated with Ni (single layer) in one sample and Ni over Cr layer (dual layer) as a catalyst on the other sample by using RF- sputtering method. Three precursor gases Acetylene (C2H2), Ammonia (NH3) and Hydrogen (H2) with flow rates 10, 50 and 50 sccm respectively are allowed to flow through the tube reactor for 20 min. Acetylene is used as source gas and Ammonia to etch the amorphous carbon and for the further reduction of catalyst size. The as grown CNTs sample was characterized by Scanning Electron Microscope (SEM) and Raman. Raman Spectra show the graphitic nature of CNTs grown on dual layer of catalyst. Field enhancement factor is increased in the dual layer coated samples.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Thanks are due to Department of Electronics and Information Technology (Ministry of Communication and Information Technology), Government of India for providing financial assistance in form of Major Research Project.

References

  1. 1.
    S.Fan,M.Chapline, N.Franklin, T.Tombler, A.Cassell, H.Dai, Science 283 (1999) 512.Google Scholar
  2. 2.
    Y.J.Jung, S.Kar,S.Talapatra, C.Soldano, G.Viswanathan, X.S.Li, Z.L.Yao,F.S.Ou, A.Avadhanula, R.Vajtai, S.Curran, O.Nalamasu, P.M.Ajayan, Nano Lett, 6(2006) 413.Google Scholar
  3. 3.
    N.de Jonge, Y.Lamy,K.Vajtai, K.Schoots,T.H.oosterkamp, Nature 420 (2002) 393.CrossRefGoogle Scholar
  4. 4.
    A.M.Fennimore,T.D.Yuzvinsky,W.Han,M.S.Fuhrer,J.Cumings, A.Zettl, Nature 424 (2003) 408.CrossRefGoogle Scholar
  5. 5.
    A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, et al., Science 273, 483 (1996).CrossRefGoogle Scholar
  6. 6.
    Z.F.Ren, Z.P.Huang, J.W.Xu, J.H.Wang, P.Bush, M.P.Siegel, Science 1998; 282:1105-07.CrossRefGoogle Scholar
  7. 7.
    C.J.Lee, D.W.Kim, T.J.Lee, Y.C.Choi, Y.S.Park, Y.H.Lee, Chem. Phys. Lett. 1999; 312: 461-08.Google Scholar
  8. 8.
    W.Z.Li, S.S.Xie, L.X.Qian, B.H.Chang, B.S.Zou, W.Y.Zhou,Science 1996; 274(5293):1701–3.CrossRefGoogle Scholar
  9. 9.
    S.Fan, M.Chapline, N.Franklin, T.Tombler, A.Cassell, H.Dai, Science 1999; 283:512-14.Google Scholar
  10. 10.
    J. Ali, A. Kumar, S. Husain, M. Husain, “Nanosci. Nanotechnol. Lett., Vol. 3(2011) pp. 175-178.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Javid Ali
    • 2
  • Avshish Kumar
    • 2
  • Samina Husain
    • 2
  • Shama Parveen
    • 2
  • Sunny Khan
    • 2
  • Harsh
    • 1
    • 2
  • M. Husain
    • 1
    • 2
  1. 1.Centre for Nanoscience and NanotechnologyJamia Millia IslamiaNew DelhiIndia
  2. 2.Department of PhysicsJamia Millia IslamiaNew DelhiIndia

Personalised recommendations