Advertisement

Advancements in SiC Power Devices Using Novel Interface Passivation Processes

  • Y. K. Sharma
  • A. C. Ahyi
  • T. Issacs-Smith
  • A. Modic
  • Y. Xu
  • E. Garfunkel
  • M. R. Jennings
  • C. Fisher
  • S. M. Thomas
  • L. Fan
  • P. Mawby
  • S. Dhar
  • L. C. Feldman
  • J. R. Williams
Part of the Environmental Science and Engineering book series (ESE)

Abstract

For the next generation 4H-SiC MOSFET devices it is very critical to have a good 4H-SiC/SiO2 interface. In this paper we reported two new passivation processes - thin phosphorous (P) passivation and nitrogen plasma (N2P) passivation. With thin P passivation the mobility of ~75 cm2/V·s can be achieved with improved threshold voltage stability. N2P passivation gives an alternative to introduce nitrogen (N) at the interface in minimum oxygen (O) ambient during passivation. With this new N2P process we can introduce more N at the interface, almost two times compared to standard NO (nitric oxide) passivation.

Keywords

Silicon carbide Nitrogen plasma passivation Thin phosphosilicate glass Interface traps Channel mobility Bias-temperature stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors would like to thank the U.S. Army Research Laboratory, the National Science Foundation, and the II-VI Foundation (Block Grant Program) for supporting this work.

References

  1. 1.
    J.B. Casady and R.W. Johnson, Solid-State Electronics, 39, 1409 (1996).CrossRefGoogle Scholar
  2. 2.
    B.J. Baliga, IEEE Transactins on Electron Devices, 43, 1717 (1996).CrossRefGoogle Scholar
  3. 3.
    G. Chung, C.C. Tin, J.R. Williams, K. McDonald, R.A. Weller, M. Di Ventra, S.T. Pantelides and L.C. Feldman, Applied Physics. Letters 76, 1713 (2000).Google Scholar
  4. 4.
    R. Schorner, P. Federichs, D. Peters and D. Stephani, IEEE Transactins on Electron Devices, 20, 241, (1999).Google Scholar
  5. 5.
    S. Dhar, S. Wang, J.R. Williams, S.T. Pantelides and L.C. Feldman, MRS Bulletin, 33, 288 (2005).CrossRefGoogle Scholar
  6. 6.
    X. Shen and S. T. Pantelides, Applied Physics. Letters, 98, 053507, (2011).Google Scholar
  7. 7.
    F. Devynck and A. Pasquarello, Physica B: Condensed Matter, 401, 556, (2007).CrossRefGoogle Scholar
  8. 8.
    X. Zhu, H.D. Lee,T. Feng, A.C.Ahyi, D. Mastrogiovanni, A. Wan, E.Garfunkel, J.R. Williams, T. Gustafsson, J.R. Williams, L.C. Feldman, Applied Physics. Letters, 97, 071908, (2010).Google Scholar
  9. 9.
    V.V. Afanas’ev, Microelectronic. Engineering, 48, 24, (1999).CrossRefGoogle Scholar
  10. 10.
    V.V. Afanas’ev, A. Stesmans, F. Ciobanu, G. Pensl, K.Y. Cheong and S. Dimitrijev, Applied Physics Letters, 82, 568, (2003).CrossRefGoogle Scholar
  11. 11.
    E. O. Sveinbjornsson, G. Gudjonsson, F. Allerstam, H.O. Olafsson, P-A. Nilsson, H. Zirathm T. Rodle and R. Jose, Materials Science Forum, 527, 961, (2006).CrossRefGoogle Scholar
  12. 12.
    T. Hatayama, S. Hino, N. Miura, T. Oomori and E. Tokumitsu, IEEE Transactions. Electron Devices, 55, 2041 (2008).Google Scholar
  13. 13.
    G. Liu, A. C. Ahyi, Y. Xu, T. Isaacs-Smith, Y. K. Sharma, J. R. Williams, L. C. Feldman and S. Dhar, IEEE Electron Device Lettres, 34, 181, (2013).Google Scholar
  14. 14.
    H. Kurimoto, K. Shibata, C. Kimura, H. Aoki and T. Sugino, Applied Surface Science, 253, 2416 (2006).Google Scholar
  15. 15.
    S.M. Thomas1, M.R. Jennings, Y.K. Sharma, C.A. Fisher and P.A. Mawby, submitted to ICSCRM Proceedings, Japan, (2013).Google Scholar
  16. 16.
    G.V. Soares, I. J. R. Baumvol, L. Hold, F. Kong, J. Han, S. Dimitrijev, C. Radtke and F. C. Stedile, Applied. Physics. Letters, 91, 041906, (2007).Google Scholar
  17. 17.
    J. Rozen, S. Dhar, M. E. Zvanut, J. R. Williams and L. C. Feldman, Journal of Applied Physics,105, 124506, (2009).CrossRefGoogle Scholar
  18. 18.
    Y.K. Sharma, A. C. Ahyi, T. Isaac-Smith, A. Modic, M. Park, Y. Xu, E.L. Garfunkel, S. Dhar, L. C. Feldman and J. R. Williams, IEEE Electron Device Letters, 34, 175, (2013).CrossRefGoogle Scholar
  19. 19.
    Jong-Pi Wey, Master thesis, Auburn University, USA, (1989).Google Scholar
  20. 20.
    R.W. McCullough, Journal of Vacuum. Science & Technology. A 14, 152, (1996).Google Scholar
  21. 21.
    R. M. Lawless, B.S. thesis, Auburn University, USA, (2004).Google Scholar
  22. 22.
    Y. K. Sharma, A. C. Ahyi, T. Issacs-Smith, X. Shen, S. T. Pantelides, X. Zhu, J. Rozen, L.C. Feldman, Y. Xu, E. Garfunkel, and J.R. Williams, Solid-State Electronics, 68, 103, (2012).CrossRefGoogle Scholar
  23. 23.
    .X. Shen and S. T. Pantelides, Applied. Physics Letters, 98, 053507, (2011).Google Scholar
  24. 24.
    B. R. Tuttle, S. Dhar, S.-H. Ryu, X. Zhu, J. R. Williams, L. C. Feldman, and S. T. Pantelides, Journal of Applied Physics, 109, 023702, (2011).CrossRefGoogle Scholar
  25. 25.
    S. Dhar, S.-H. Ryu, and A. K. Agarwal, IEEE Trasactions on Electron Devices, 57, 1195, (2010).CrossRefGoogle Scholar
  26. 26.
    E.H. Snow and B.E. Deal, Journal of the Electrochemical Society, 113, No. 3, 263, (1996).Google Scholar
  27. 27.
    A.J. Lelis, D. Habersat, R. Green and N. Goldsman, Material Science Forum, 600-603, 807, (2009).Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Y. K. Sharma
    • 1
  • A. C. Ahyi
    • 2
  • T. Issacs-Smith
    • 2
  • A. Modic
    • 2
  • Y. Xu
    • 3
  • E. Garfunkel
    • 3
  • M. R. Jennings
    • 1
  • C. Fisher
    • 1
  • S. M. Thomas
    • 1
  • L. Fan
    • 1
  • P. Mawby
    • 1
  • S. Dhar
    • 2
  • L. C. Feldman
    • 4
  • J. R. Williams
    • 2
  1. 1.University of WarwickCoventryUK
  2. 2.Physics DepartmentAuburn UniversityAuburnUSA
  3. 3.Department of ChemistryRutgers UniversityPiscatawayUSA
  4. 4.IAMDN, Rutgers UniversityPiscatawayUSA

Personalised recommendations